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O. Introduction. We shall say that a multiplicative closure
operator V defined on a distributive lattice L with zero and unit is
a Boolean mutiplicative closure operator if any closed element under
V has a complement in L. Examples of Boolean multiplicative closure
operators are the possibility operator defined by Gr. Moisil (7,
7_8_)) in (three-valued) Lukasiewicz algebras (see also 3 and [4),
and the operator D defined by G. Epstein ([5, Definition 2) in Post
algebras.

The aim of this note is to give a characterization of those dis-
tributive lattices (with zero and unit) that admits a Boolean multiplica-
rive closure operator. In 1 we give the definitions and notations.
In 2 we characterize additive-multiplicative closure operators by
the set of their closed elements and in 3 we apply the results of
2 to solve our main problem. Finally, in 4 we show how some

of the previous theorems can be extended to general multiplicative
closure operators.

These results have some applications in the study of the lattice
theory of many-valued logics. We were inspired in A. Monteiro’s
work on the ideal theory of (three-valued) Lukasiewicz algebras,
that will be published elsewhere.

1. Definitions and notations. Let L be a distributive lattice
with zero 0 and unit 1. we shall consider operators /7 from L into
L satisfying some of the following conditions"

CO) ]70-0, C1) x<_rx, C2) rx-lrx,
C3) If x<_y, then Vx<_Vy, C4) V(xVy)-VxVVy,
C5) (xAy) TxAy.

If V satisfies C1), C2), and C3) it is called a closure operator (see
[9, [12_, [2), and we shall denote the set of all closure operators
on L by C(L).

If V satisfies C1), C2), and C4), (or C1), C2), and C5)), it is called
an additive closure operator (10_, [11, [6) (or multiplicative closure
operator, [1, 6), and we shall denote by Ca(L)(Cm(L)) the set of
additive (multiplicative) closure operators defined on L. It is clear

The references are contained in the second paper.


