105. On Certain Condition for the Principle of Limiting Amplitude. II

By Kôji KUBOTA and Taira SHIROTA Department of Mathematics, Hokkaido University (Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1967)

1. Introduction and results. We consider the problem

(1)
$$\begin{bmatrix} \frac{\partial^2}{\partial t^2} - \varDelta + q(x) \end{bmatrix} u(x, t) = 0 \quad (t > 0),$$
$$u(x, 0) = 0, \quad \frac{\partial u}{\partial t}(x, 0) = f(x),$$

where x is a point of 3-dimensional Euclidean space $E=R^3$, and Δ denotes the Laplace operator in E.

In an earlier paper [1], for the case that q has compact support we proved that under the certain condition the principle of limit amplitude for the problem (1) is valid if and only if there exists no solution $\omega \notin L^2(E)$ of the equation $(-\varDelta + q)\omega = 0$ satisfying conditions $\omega = O(|x|^{-1}), \frac{\partial \omega}{\partial x_i} = O(|x|^{-2}) (|x| \to \infty)$ (see [2]).

In the present paper we shall prove the same one for the case that the support of q is not compact.

Through the present paper q(x) and f(x) are assumed to satisfy the following conditions $(C_1), (C_2)$, and (C_3) :

(C₁) q(x) is a locally Hölder continuous real-valued function and behaves like $O(|x|^{-2-\alpha})$ ($\alpha > 0$) at infinity.

By A we denote the unique self-adjoint extension in $L^2(E)$ of $-\varDelta + q$ defined on $C_0^{\infty}(E)$.

 (C_2) A has no eigenvalue.

Then A is positive definite.

(C₃) f belongs to the domain $D(A^{\frac{1}{2}})$ of the self-adjoint operator $A^{\frac{1}{2}}$ and behaves like $O(|x|^{-3-\alpha})$ at infinity.

Under the assumptions (C_1) , (C_2) , and (C_3) we have the followings:

Theorem 1. Suppose that $\langle f, \omega \rangle = 0$, where ω is the preceding one and $\langle f, \omega \rangle$ denotes $\int_{\mathbb{R}} f(x)\omega(x)dx$. Then for the solution $u(t) \equiv u(x, t)$ of (1) we have

 $\lim_{t\to\infty} (u(t), \varphi)_{L^2(E)} = 0 \quad for \ all \ \varphi \in L^2(E),$

and

$$\lim_{t\to\infty}||u(t)||_{L^2(K)}=0 \qquad for \ all \ compact \ K\subset E.$$