134. On Some Classes of Operators. I

By I. ISTRĂTESCU**) and V. ISTRĂTESCU***) (Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1967)

Introduction. Generalizing the concept of normality, several authors have introduced classes of non-normal operators.

Thus, one of these classes is the class of hyponormal operators of P. Halmos [1]. In the paper [2] it was introduced a new class of operators generalizing hyponormal operators.

It is the aim of this Note to introduce a new class of operators which generalizes the class of operators of class (N) of [2] and give some properties. The definition and some properties has sense also for operators on Banach spaces, however we consider only Hilbert spaces operators.

1. Let T be a bounded linear operator on a Hilbert space H. The operator is of class (N) if

$$x \in H$$
, $||x|| = 1$, $||Tx||^2 \le ||T^2x||$.

This definition suggests the following

Definition 1. The operator T is of class (N) and order k if $x \in H$, ||x|| = 1 $||Tx||^k \le ||T^kx||$.

We write this as $T \in \mathcal{C}(N, k)$. It is clear that the operators of class (N) is $\mathcal{C}(N, 2)$.

Theorem 1. If $T \in C(N, k)$, then the spectral radius of T, γ_T is equal to ||T||.

Proof. By definition there exists a sequence $\{x_n\}$, $||x_n||=1$ such that

$$||Tx_n|| \rightarrow ||T|| = 1.$$

(We may suppose, without loss of generality that ||T||=1.) Since, for every x, ||x||=1,

$$|| Tx ||^k \le || T^k x ||$$

we have

$$\lim ||T^k x_n|| = 1$$

This leads, also, to

$$\lim ||T^j x_n|| = 1 \qquad 1 \leqslant J \leqslant K.$$

Since

$$\mid\mid T^{k+1}x\mid\mid = \left \| T^{k} \frac{Tx}{\mid\mid Tx\mid\mid} \right \|\mid\mid Tx\mid\mid \geqslant \mid\mid T^{2}x\mid\mid^{k} \frac{1}{\mid\mid Tx\mid\mid^{k-1}}$$

If we put in this inequality, $x = x_n$ we obtain

^{*)} Institute of Mathematics Romanian Academy, Bucharest, str. M. Eminescu 47.

^{**)} Polytechnic Institute, Timișoara, Romania.