195. On Free Abelian m-Groups. III

By F. M. SIOSON

University of Ateneo de Manila, Manila

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 13, 1967)

In this part, the notion of tensor product of abelian m-groups will be introduced.

Definition. The tensor product of the abelian *m*-groups M and N is defined as F/θ and is denoted by $M \boxtimes N$.

If $|(x, y)|/\theta$ is denoted by $x \boxtimes y$, observe that

$$\begin{bmatrix} x_1 x_2 \cdots x_m \end{bmatrix} \boxtimes y = \begin{bmatrix} (x_1 \boxtimes y)(x_2 \boxtimes y) \cdots (x_m \boxtimes y) \end{bmatrix}, x \boxtimes \begin{bmatrix} y_1 y_2 \cdots y_m \end{bmatrix} = \begin{bmatrix} (x \boxtimes y_1)(x \boxtimes y_2) \cdots (x \boxtimes y_m) \end{bmatrix},$$

and $x^{\langle n \rangle} \boxtimes y = x \boxtimes y^{\langle n \rangle} = (x \boxtimes y)^{\langle n \rangle}$.

Theorem 9. Let M, N, P be arbitrary abelian m-groups and $f: M \times N \rightarrow P$ be a function satisfying the conditions

(a) $f([x_1x_2\cdots x_m], y) = [f(x_1, y)f(x_2, y)\cdots f(x_m, y)],$

(b)
$$f(x, [y_1y_2 \cdots y_m]) = [f(x, y_1)f(x, y_2) \cdots f(x, y_m)],$$

(c) $f(x^{\langle n \rangle}, y) = f(x, y^{\langle n \rangle}),$

for all $x, x_1, \dots, x_m \in M$ and $y, y_1, \dots, y_m \in N$. Then there exists uniquely an m-group homomorphism $h: M \boxtimes N \rightarrow P$ such that the following diagram is commutative

that is, $h(x \boxtimes y) = f(x, y)$ for all $x \in M$ and $y \in N$.

Proof. Let F be the free abelian m-group on $M \times N$ and $i: M \times N \rightarrow F$ be the injection i(x, y) = |(x, y)|. Consider the following diagram.

By Theorem 4, f possesses a unique homomorphic extension $f^*: F \to P$ such that $f^* \cdot i(x, y) = f(x, y)$ so that $f^*(|(x, y)|) = f(x, y)$. Since

$$f^{*}(|([x_{1}x_{2} \cdots x_{m}], y)|) = f([x_{1}x_{2} \cdots x_{m}], y) \\ = [f(x_{1}, y)f(x_{2}, y) \cdots f(x_{m}, y)] = [f^{*}(|(x_{1}, y)|) \cdots f^{*}(|(x_{m}, y)|)],$$