211. A Product Theorem Concerning Some Generalized Compactness Properties¹⁾

By L. H. MARTIN

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1967)

1. Introduction. In the last forty years a number of product theorems concerning compact topological spaces have been proven. In particular, Tychonoff [9] showed that the product of two compact spaces is a compact space, Dieudonné [1] showed that the product of a compact space and a paracompact space is a paracompact space, and Dowker [2] showed that the product of a compact space and a countably paracompact space is a countably paracompact space. These are three of the best-known theorems of the type: If X is a compact topological space and Y is a topological space with some generalized compactness property π , then the product space $X \times Y$ has the property π . The purpose of this paper is to prove a general theorem of this type and also to offer a unified approach to many generalized compactness properties.

2. A characterization of some generalized compactness properties. For each topological space X, let $\mathfrak{P}(X)$ be the set of all subsets of X. Let \mathfrak{T} be the class of all topological spaces, let $\mathfrak{S} = \bigcup \{\mathfrak{PPR}(X) : X \in \mathfrak{T}\}$ and let $Q: \mathfrak{T} \to \mathfrak{S}$ be a function with $Q(X) \in \mathfrak{PPR}(X)$ whenever $X \in \mathfrak{T}$.

Definition 1. Q is slattable over X if and only if, whenever Y is a topological space and $\Lambda \in Q(X)$, there exists $\Gamma \in Q(X \times Y)$ such that whenever $G \in \Gamma$, then $G \subset L \times Y$ for some $L \in \Lambda$.

Definition 2. If Q is slattable over every topological space and m and n are infinite cardinals with $n \leq m$, then Q_n (respectively Q_n^m) is the class of all topological spaces X such that, if \mathfrak{C} is an open cover of X (\mathfrak{C} is an open cover of X with card (\mathfrak{C}) $\leq m$), then there exists an open refinement \mathfrak{R} of \mathfrak{C} and $\Gamma \in Q(X)$ with each element of Γ intersecting fewer than n elements of \mathfrak{R} .

Definition 3. The functions C, P, and M from \mathfrak{T} into \mathfrak{S} are defined by:

 $C(X) = \{\{X\}\}\$ $P(X) = \{\{\emptyset: \& \text{ is an open cover of } X\}\$ $M(X) = \{\{\{x\}: x \in X\}\}.$

¹⁾ This research was supported by National Science Foundation Undergraduate Science Education Program Grant GE-4173. The author would like to express his deepest gratitude to Dr. John Greever for his invaluable guidance and assistance.