No. 10]

209. Note on Inverse Images under Open Finite-to-One Mappings

By Akihiro OKUYAMA Osaka Kyoiku University (Comm. by Kinjirô Kunugi, M.J.A., Dec. 12, 1967)

1. Introduction and theorems. Recently, A. Arhangel'skii [2] proved the following result:

A completely regular T_2 space which is the inverse image of a metric space under an open-closed finite-to-one mapping¹ is metrizable. Also, in the same paper he showed that the inverse image of a compact metric space under an open finite-to-one mapping needs not be metrizable.²

Hence, we shall consider the metrizability of it adding some assumptions and obtain the following result:

Theorem 1. If f is an open finite-to-one mapping of a normal, locally compact T_2 space X onto a metric space Y, then X is metrizable.

On the other hand, in [8] we introduced and discussed the notion of spaces with σ -locally finite nets³⁾ as a class of topological spaces containing all metric spaces. As for the space with a σ -locally finite net, the following holds:

Theorem 2. Let f be an open finite-to-one mapping of a normal T_2 space X onto a collectionwise normal T_2 space with a σ -locally finite net. Then X has a σ -locally finite net.

If we combine Theorem 2 with the notion of *M*-space (cf. [7]), we can obtain the another proof of the above Arhangel'skii's theorem and a generalization of it:

Theorem 3. Let f be an open finite-to-one mapping of a normal T_2 space X onto a collectionwise normal T_2 space Y with a σ -locally finite net and g a closed mapping of X onto a metric space Z such that $g^{-1}(z)$ is countably compact for each $z \in Z$. Then X is metrizable.

In the following we shall prove Theorems 2, 1, and 3 using some lemmas, and construct an example of a non-metrizable hereditarily

¹⁾ In this note we consider only continuous mapping.

²⁾ The description of his example seems to contain some inaccuracies.

³⁾ A collection \mathfrak{B} of (not necessarily open) sets of a topological space X is called a *net* for X if, whenever $x \in U$ with x a point and U open in X, then $x \in B \subset U$ for some $B \in \mathfrak{B}$ (cf. [6], [3]). A net which is a union of countably many locally finite collections is called a σ -locally finite net (cf. [8]).