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1. Introduction and theorems. Recently, A. Arhangel’skii [2
proved the following result:

A completely regular T2 space which is the inverse image of
a metric space under an open-closed finite-to-one mapping" is
metrizable. Also, in the same paper he showed that the inverse
image of a compact metric space under an open finite-to-one
mapping needs not be metrizao

Hence, we shall consider the metrizability of it adding some
assumptions and obtain the following result:

Theorem 1. If f is an open finite-to-one mapping of a
normal, locally compact T2 space X onto a metric space Y, then
X is metrizable.

On the other hand, in [8 we introduced and discussed the
notion of spaces with a-locally finite nets) as a class of topological
spaces containing all metric spaces. As for the space with a a-locally
finite net, the following holds:

Theorem 2. Let f be an open finite-to-one mapping of a
normal T space X onto a collectionwise normal T space with
a a-locally finite net. Then X has a a-locally finite net.

If we combine Theorem 2 with the notion of M-space (cf. [7),
we can obtain the another proof of the above Arhangel’skii’s theorem
and a generalization of it"

Theorem 3. Let f be an open finite-to-one mapping of a
normal T. space X onto a collectionwise normal T space Y with
a a-locally finite net and g a closed mapping of X onto a metric
space Z such that g-l(z) is countably compact for each z eZ.
Then X is metrizable.

In the following we shall prove Theorems 2, 1, and 3 using some
lemmas, and construct an example of a non-metrizable hereditarily

1) In this note we consider only continuous mapping.
2) The description of his example seems to contain some inaccuracies.
3) A collection of (not necessarily open) sets of a topological space X is

called a net for X if, whenever x U with x a point and U open in X, then
xBU for someB (cf. 6, 3). A net which is a union of countably many
locally finite collections is called a a-locally finite net (cf. [8).


