7. On Connections of Geometric Structures

By Kwoichi TANDAI

Yoshida College, Kyoto University

(Comm. by Kinjirô Kunugi, M.J.A., Jan. 12, 1968)

Let G_0 and \widetilde{G} be Lie groups and $\rho: \widetilde{G} \longrightarrow G_0$ be a homomorphism. G_0 acts on another Lie group K from the left distributively:

$$a \cdot (k_1 \cdot k_2) = (a \cdot k_1) \cdot (a \cdot k_2)$$
 for $a \in G_0$ and $k_1, k_2 \in K$.

Let $\Theta: \widetilde{G} \longrightarrow K$ be a C^{∞} -mapping such that

(1)
$$\Theta(a \cdot b) = \{\rho(b^{-1}) \cdot \Theta(a)\} \cdot \Theta(b).$$

Then clearly $G = \{a \in G \colon \theta(a) = 1\}$ is a closed subgroup of \widetilde{G} and we have the

Proposition 1. There is a canonical action of \tilde{G} on K from the right, defined by

(2)
$$k \cdot a = \{\rho(a^{-1}) \cdot k\} \Theta(a), \text{ where } k \in K \text{ and } a \in \widetilde{G}.$$

Assume that $P(M, \widetilde{G})$ be a C^{∞} -differentiable principal fibre bundle over a C^{∞} -manifold M of n dimensions. The we have two induced fibre bundles $T(M, K, \widetilde{G})$ and $B(M, K, \widetilde{G})$ over M with fibre K, associated with $P(M, \widetilde{G})$, determined by ρ and the action of \widetilde{G} on K in Proposition 1, respectively. A C^{∞} -cross-section of $T(M, K, \widetilde{G})$ is called, by the abuse of language, as a tensor field on M of type ρ , while we define a connection of type $(P(M, \widetilde{G}), \rho, \theta)$ as a C^{∞} -cross-section ω of $B(M, K, \widetilde{G})$.

Proposition 2. If ω_1 and ω_2 are two connections of type $(P(M, \widetilde{G}), \rho, \Theta)$, then $\omega_1 \cdot \omega_2^{-1}$ is a tensor field on M of type ρ . It must be remarked that in the above proposition $\omega_1^{-1} \cdot \omega_2$ is not necessarily a tensor field of type ρ , unless K is abelian.

Our definition generalizes that of Gunning [2], who studied the case where K is a vector space, $G_0 = GL(K)$ and $P(M, \widetilde{G})$ is $F^r(M)$ we define below.

Proposition 3. The definition of the connection above includes those of principal fibre bundles of Ehresmann [1], of vector bundles as splittings of short exact sequences (cf. P. Libermann [6]), and of the bundles of higher order defined by Ehresmann (cf. N. V. Quê $\lceil 7 \rceil$), provided that $P(M, \tilde{G})$, ρ , θ are suitably chosen.

The proof is easily checked in all cases.

In the applications important is the following

Proposition 4. If M is paracompact and K is a connected nilpotent Lie group, then there is a connection of type $(P(M, \tilde{G}) \rho, \theta)$.

In the following we consider affine connections of higher order, as an example. Let $F^r(M)$ (resp. $F^{(r)}(M)$) be the set of all invertible