6. Unions of Strongly Paracompact Spaces. II¹⁾

By Yoshikazu Yasui

Osaka Kyōiku University

(Comm. by Kinjirô Kunugi, M.J.A., Jan, 12, 1968)

As is well known, the space that is the union of two closed strongly paracompact²⁾ subspaces need not be strongly paracompact (see [6]). In the previous note (see [8]), we have proved the following theorem:

Theorem 1. Let $\mathfrak{F} = \{F_{\alpha} \mid \alpha \in A\}$ be a locally finite closed covering of a regular T_1 -space X such that $Fr(F_{\alpha})^{\mathfrak{S}_1}$ has the locally Lindelöf property for any $\alpha \in A$. Then a necessary and sufficient condition that X be strongly paracompact is that F_{α} is strongly paracompact for any $\alpha \in A$.

A main purpose of this note is to show the following theorem: Theorem 2. Let X be a normal T_1 -space and $\mathfrak{G} = \{G_\alpha \mid \alpha \in A\}$ be a locally finite open covering of X such that $G_\alpha \cap G_\beta$ has the locally Lindelöf property with respect to its relative topology for each $\alpha, \beta \in A$ with $\alpha \neq \beta$. If G_α is strongly paracompact for each $\alpha \in A$, then X is strongly paracompact.

Proof. Suppose that A is well ordered. As is well known ([2]; Proposition 1.2), we can take the open covering $\mathfrak{D} = \{H_{\alpha} \mid \alpha \in A\}$ of X such that $\overline{H}_{\alpha}^{4} \subset G_{\alpha}$ for each $\alpha \in A$ and therefore $\overline{\mathfrak{D}}^{5}$ is a locally finite closed covering of X. By the way to make the covering \mathfrak{D} ,

$$X - \Bigl(igcup_{lpha < lpha_0} H\Bigr) \cup \Bigl(igcup_{lpha > lpha_0} G_lpha\Bigr) \subset H_{lpha_0} \subset ar{H}_{lpha_0} \subset G_{lpha_0},$$

and then

$$\begin{split} Fr(\bar{H}_{\alpha_0}) {\subset} \bar{H}_{\alpha_0} {-} H_{\alpha_0} {\subseteq} G_{\alpha_0} {-} \Big[X {-} \Big\{ \Big(\underset{\alpha < \alpha_0}{\cup} H \Big) \cup \Big(\underset{\alpha > \alpha_0}{\cup} G \Big) \Big\} \Big] \\ {\subset} G_{\alpha_0} \cap \Big(\underset{\alpha \neq \alpha_0}{\cup} G_{\alpha} \Big) {=} \underset{\alpha \neq \alpha_0}{\cup} (G_{\alpha_0} \cap G_{\alpha}), \end{split}$$
 then $\underset{\alpha \neq \alpha_0}{\cup} (G_{\alpha_0} \cap G_{\alpha})$ has the locally Lindelöf property and hence $Fr(\bar{H}_{\alpha_0})$

then $\bigcup_{\alpha \neq \alpha_0} (G_{\alpha_0} \cap G_{\alpha})$ has the locally Lindelöf property and hence $Fr(\bar{H}_{\alpha_0})$ has the locally Lindelöf property. After all we have the locally finite closed covering $\mathfrak{P} = \{\bar{H}_{\alpha_0} \mid \alpha \in A\}$ such that $Fr(\bar{H}_{\alpha_0})$ has the locally Lindelöf property for any $\alpha \in A$. Therefore, by Theorem 1, we can

¹⁾ This note is a continuation of the previous note [8].

²⁾ The Hausdorff space X is $strongly\ paracompact$ if an arbitrary open covering of X has the star finite open covering of X as a refinement.

³⁾ $Fr(F_{\alpha})$ denotes the boundary of \overline{F}_{α} in X, that is, $Fr(F_{\alpha}) = \overline{F}_{\alpha} \cap \overline{X - A_{\alpha}}$.

⁴⁾ For the subset H_{α} of a topological space X, $\overline{H_{\alpha}}$ denotes the closure of H_{α} in X.

⁵⁾ For the collection $\mathfrak P$ of subsets of a topological space X, $\overline{\mathfrak P}$ denotes the collection $\{\overline{U}\mid U\in\mathfrak P\}$.