9. Ackermann's Model and Recursive Predicates

By Moto-o Takahashi

Mathematical Institute, Tokyo University of Education, Tokyo (Comm. by Zyoiti SUETUNA, M. J. A., Feb. 12, 1968)

Let N be the set of all non-negative integers. Define a binary predicate \in on N by

$$a \in b$$
. $\equiv . \lceil b/2^a \rceil$ is odd,

where [x] means the greatest integer contained in x. (For the recursive definition of [x/y], see Kleene [1], p. 223). Then the structure $\langle N, \in \rangle$, which is called Ackermann's model, satisfies all the axioms of ZF except the axiom of infinity.

A predicate $P(a_1, \dots, a_n)$ on N is called bounded, if there exists a restricted formula $A(x_1, \dots, x_n)$ in the sence of [2] such that $P(a_1, \dots, a_n)$ holds if and only if $A(a_1, \dots, a_n)$ is true in $\langle N, \in \rangle$. Then our main theorem can be stated as follows:

Theorem. A predicate $R(a_1, \dots, a_n)$ is general recursive if and only if there exists bounded predicates $P(a, a_1, \dots, a_n)$ and $Q(a, a_1, \dots, a_n)$ such that

$$(1) R(a_1, \dots, a_n) \equiv \exists x P(x, a_1, \dots, a_n) \equiv \forall x Q(x, a_1, \dots, a_n)$$

for all $a_1, \dots, a_n \in N$.

Proof. First suppose that there exist P and Q satisfying (1). Since \in is primitive recursive, we can easily show that every bounded predicate is primitive recursive. Hence, by the theorem VI(b) of [1], R is general recursive. Before proving the converse, we prove several lemmata. We temporarily call a predicate R for which there can be found bounded predicates P and Q satisfying (1) as a Δ -predicate.

Lemma 1. a < b is a Δ -predicate.

Proof. Let A(p, z). \equiv . Comp $(z) \land p \subseteq z \times z \land \forall x \forall y (\langle xz \rangle \in p)$ $\equiv x \in z \land y \in z \land \exists u (u \in y \land u \notin x \land \forall v (\langle uv \rangle \in p \supset (v \in x \equiv v \in y))))$, where $z \times z$ means direct product. Then A(p, z) has the following properties:

- 1° A(p,z) is bounded.
- 2° If A(p, z), then we have

$$\forall i \forall j (\langle ij \rangle \in p \equiv i \in z \land j \in z \land i < j).$$

 3° $\forall a \forall b \exists p \exists z (a \in z \land b \in z \land A(p, z)).$

 1° and 3° are easily proved. 2° is proved by the induction on $\max(i,j)$. Therefore

$$a < b \equiv \forall p \forall z (a \in z \land b \in z \land A(p, z) \land \langle ab \rangle \in p).$$

This clearly shows a < b is a Δ -predicate.

Lemma 2. a'=b is a Δ -predicate.