46. Extended p-th Powers of Complexes and Applications to Homotopy Theory

By Hirosi TODA

Department of Mathematics, Kyoto University, Kyoto
(Comm. by Zyoiti SUETUNA, M. J. A., April 12, 1968)

1. Extended p-th power of a complex. Throughout this note p will denote an odd prime, m=(p-1)/2, $\pi=Z_p$ a cyclic group of order p, and the homology and cohomology groups will have the coefficient group Z_p . Let $W=W^\infty(=S^\infty)$ be a regular π -free acyclic CW-complex having one π -free basic cell e_i for each dimension i. The cells e_i are oriented such that in the infinite dimensional lens space W/π the dual $w_i \in H^i(W/\pi)$ of the class of e_i satisfies $w_{2i}=(w_i)^2$ and $\beta(w_2)=w_1$ for the cohomology Bockstein β .

For a finite CW-complex X, the product and the reduced join of p-copies of X will be denoted by $X^p = X \times \cdots \times X$ and $X^{(p)} = X \wedge \cdots \wedge X$ respectively. Let π acts on X^p and $X^{(p)}$ as cyclic permutations of the factors, and consider the quotient complexes

$$W^r \times_{\pi} X^p$$
 and $ep^r(X) = (W^r \times_{\pi} X^{(p)})/(W^r/\pi)$,

where W^r indicates the r-skeleton of X and $W^r/\pi = W^r \times_{\pi} x_0^{(p)}$ for the base point x_0 of X. Let x_0, x_1, x_2, \cdots be a Z_p -basis of homogeneous elements of $H_*(X)$ which satisfies that if $\Delta x_j \neq 0$ for the homology Bockstein then $\Delta x_j = x_l$ for some l. A Z_p -basis of $H_*(W \times_{\pi} X^p)$ is given as the classes represented by the following cycles (cf. [2], [3]):

$$e_i \otimes_{\pi} x_j^p$$
, $j = 0, 1, 2, \dots$, $x_j^p = x_j \otimes \dots \otimes x_j$ (p-times), $e_0 \otimes_{\pi} (x_{j_1} \otimes \dots \otimes x_{j_p})$, $j_s \neq j_t$ for some s, t ,

where (j_1, \dots, j_p) runs through each representatives of the classes obtained by cyclic permutations of the indices. The same result holds for $H_*(W^r \times_{\pi} X^p)$ restricting e_i by $0 \le i \le r$ and by adding cycles of the form $\partial(e_{r+1} \otimes_{\pi} (x_{j_1} \otimes \cdots \otimes x_{j_p}))$.

By the natural projection $W^r \times_{\pi} X^p \to ep^r(X)$, a Z_p -basis of $\tilde{H}_*(ep^r(X))$ is obtained from that of $H_*(W^r \times_{\pi} X^p)$ by omitting the cycles containing x_0 .

Denote by $P_*^i: H_q \to H_{q-2i(p-1)}$ the dual of the Steenrod reduced power P^i , and let $P_*^i x_k = \Sigma_j a_{k,j}(i) x_j$ for $a_{k,j} \in \mathbb{Z}_p$. Then the following relation has been established in [3].

Theorem 1. (Nishida).

$$P_*^n(e_{c+2n(p-1)} \otimes_{\pi} x_k^p) = \sum_{i,j} \binom{[c/2] + qm}{n-pi} a_{k,j}(i) (e_{c+2ip(p-1)} \otimes_{\pi} x_j^p)$$