71. Calculus in Ranked Vector Spaces. IV

By Masae YAMAGUCHI

Department of Mathematics, University of Hokkaido (Comm. by Kinjirô KUNUGI, M. J. A., May 13, 1968)

1.9. The special case. (1.9.1) Proposition. Let E be a normed vector space, $\{x_n\}$ a sequence of E and $x \in E$. Then for a sequence $\{x_n\}$ converges to x in the sense of ranked vector space it is necessary and sufficient that it converges to x in the sense of norm, i.e.,

$$\{\lim x_n\}\ni x \iff \lim ||x_n-x||=0.$$

Proof. (a) Suppose that $\{\lim x_n\}\ni x$, i.e., there exists a sequence $\{U_n(x)\}$ of neighborhoods of the point x and a sequence $\{\alpha_n\}$ of integers such that,

$$U_0(x) \supset U_1(x) \supset U_2(x) \supset \cdots \supset U_n(x) \supset \cdots, \ 0 \le n < \omega_0,$$
 $\alpha_0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_n \le \cdots, \ 0 \le n < \omega_0,$
 $\sup_{x} \alpha_n = \omega_0, \ U_n(x) \ni x_n, \ \text{and} \ U_n(x) \in \mathfrak{B}_{\alpha_n},$

for $n = 0, 1, 2, \cdots$

By (1.6.6), each $U_n(x)$ is written in the following form, using $U_n(x) \in \mathfrak{B}_{\alpha_n}$,

$$U_n(x) = x + V_{\alpha_n}(0), \qquad n = 0, 1, 2, \cdots$$

where
$$V_{\alpha_n}(0) = \left\{x; ||x|| < \frac{1}{\alpha_n}\right\}$$
.

For every $\varepsilon > 0$, there exists a positive number N, using $\sup \alpha_n = \omega_0$, such that

$$n \ge N \Rightarrow \frac{1}{\alpha_n} < \varepsilon.$$

Since $U_n(x) = x + V_{\alpha_n}(0) \ni x_n$, $V_{\alpha_n}(0) \ni x_n - x$

$$||x_n-x||<\frac{1}{\alpha_n}.$$

Thus if $n \ge N$, then

$$||x_n-x|| < \frac{1}{\alpha_n} < \varepsilon$$

 $\therefore \lim ||x_n-x|| = 0.$

(b) Suppose coversely that $\lim ||x_n-x||=0$, then, for 1, there exists a positive number n_1 such that

$$n \ge n_1 \Rightarrow ||x_n - x|| < 1,$$

$$V_1(0) \ni x_{n_1} - x, x_{n_1+1} - x, \cdots, x_{n_1+i} - x, \cdots$$