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1.9. The special case. (1.9.1) Proposition. Let E be a normed
vector space, {x,} a sequence of E and xe E. Then for a sequence
{x.} converges to x in the sense of ranked vector space it is necessary
and sufficient that it converges to x in the sense of norm, i.e.,

{lim z,,} 3 v<=lim ||z, —2||=0.

Proof. (a) Suppose that {limz,}sx, i.e., there exists a se-
quence {U,(x)} of neighborhoods of the point # and a sequence {«a,} of
integers such that,

U)oU) 2Uyx)D - - DU (x)D -+, 0<n< @,
o, <ol - La, <, 0<n<w,,
Sup a,=w,, U,(®) 5x,, and U,(x)eB,,,

for n=0,1,2, ---.
By (1.6.6), each U,(x) is written in the following form, using
U.(x)e,,,
U.(x)=2+V,,(0), n=0,1,2, ...
1
an}'

For every ¢ >0, there exists a positive number N, using sup a,
=®,, such that

where V, (0)= {x; [foe]] <

n>N=> 1 <e.
(249
Since U (@)=x+7V,,(0) 3%, V, 0)s2,—%
1
[ — || <—.
(247
Thus if n>N, then
a0 — ]| < <&
qy

lim ||z, —2||=0.
(b) Suppose coversely that lim||x,—2||=0, then, for 1, there
exists a positive number 7, such that
n>n=| e, — || <1,
Vi(0) > Ly — Xy Xpyy1— Ly * 00y pyyg— Ly » 0



