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In this part of the paper, we discuss an integral in a concrete
forman integral ’of a (measurable) function f over a (measurable)
set X’ by a measure/.

1. Definition of an integral system. Let M be a non-empty set.
Let G, K, and J be topological additive groups1 and assume that, for
each g e G and k e K, the product g. k of g and k is defined as an ele-
ment of J satisfying the conditions:

1) (g+g’).k=g.k+g’.k,
2) g.(lc+Ic’)=g.tc+g.tc’,

for each g, g’ G, and k, k’ K.
Now let us denote by F the additive group of all K-valued func-

tions defined on M (the sum of two functions in F is defined in the
usual way). We consider F as a topological group, in which the
family of all sets of the form {flf e F, f(M)P}, where P is a neigh-
bourhood of the unit element of K, constitutes a base of the system of
neighbourhoods of the unit element of . This topology is character-
ized as the topology such that any sequence of elements of F con-
verges in the space if and only if the sequence uniformly converges
as a functional sequence.

Then the map 9 of K into F defined by (9(a))(x)-a, for each
a e K and x e M, is an isomorphism of the topological group K into F
so that we may identify the topological group K, by the isomorphism, with the subgroup 9(K) of .

Let /be the family of all subsets of M. Then / is a ring (in
the algebraic sense) of which each element is an idempotent, when
we define, for each X and Y in , X+ Y and XY by (X-Y) (Y-X)
and X Y, respectively.

For each X e and f e , denote Xf the function in F such that

,f(x) if x eX,
(Xf)(x)= if xeM--X.

Then each element X of is considered as a continuous homo-
morphism of F into itself satisfying the conditions’

1) The topology of G plays no role here.


