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The purpose of this Note is to give a characterization of De
Morgan lattice in terms of implication and negation.

The notion of De Morgan lattice has been considered by Gr. C.
Moisil [4] in the work mentioned in the reference included at the end
of this Note and has been studied by J. A. Kalman [3] under the name
of distributive i-lattice. A. Bialynicki-Birula and H. Rasiowas [2]
have studied this type of lattice having the first element under the
name of quasi-boolean algebra. The nomenclature used here is due
to A. Monteiro [5].

A lattice can be defined as a system (M, , U) consisting of a non
empty set M and two binary operations U, defined on M such that
the following properties are verified:

L1. xUy--yUx, L’I. xy=yx,
L2. xU(yUz)=(xy)Uz, L’2. x(yz)=(xy)z,
L3. xU(yx)=x, L’3. x(yUx)=x.
A lattice is called a distributive lattice if it verifies the property"
D. x (J (y z) (x z) (x 9 z).
A distributive lattice is called a De Morgan lattice if a unary op-

eration is defined on it such that the following two properties hold"
M1. --x=x,
M2. --(xUy)=--x--y.
Theorem. Let M be a non-empty set, -- a binary operation and

a unary operation defined on M such that the following properties
are verified"

A1. x y= y--. x,
A2. (x-- y)-.y y
A3. (x--y)--z= -((- x-z)---(y-oz)).

If we write xDy=-x-y and xy=-(x--.-y), then the system
(M, U, , --) is a De Morgan lattice.

Proo. M1. x=-(--x).
In order to prove this, let us see the following two relations"

a) x-ox= x,
b) x--.--x= --x.


