138. A Note on Nets and Metrization

By Francis SIWIEC and Jun-iti NAGATA^{*)} University of Pittsburgh

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1968)

A collection \mathcal{B} of subsets of a topological space X is a *net* for X if for each point x in X and open neighborhood U of x there exists a $B \in \mathcal{B}$ such that $x \in B \subset U$. A space with a σ -locally finite net is called a σ -space and a regular space with a countable net is called a *cosmic* space (A. Okuyama [15] and E. Michael [7]). We assume at least T_1 for every topological space throughout this paper. For terminology not defined here, see J. Nagata [11].

A collection \mathcal{F} of closed subsets of a topological space X is a *ct-net* for X if for any different points x, x' of X there is an $F \in \mathcal{F}$ such that $x \in F$ and $x' \notin F$. A space with a σ -closure preserving *ct-net* is called a σ^* -space.

A base \mathcal{B} for a space X is *point countable* if each point x of X is in at most countably many members of \mathcal{B} .

A space is *semi-metrizable* if there is a distance function d for X such that (i) for each x and y in X, $d(x, y) = d(y, x) \ge 0$ and d(y, y) = 0 only if x = y, (ii) for $x \in X$ and $M \subset X$, $\inf\{d(x, y) | y \in M\} = 0$ iff $x \in \overline{M}$.

A space X has a $G_{\mathfrak{s}}$ -diagonal if the diagonal in $X \times X$ is a $G_{\mathfrak{s}}$ -set.

Let $\{U_i | i=1, 2, \dots\}$ be a sequence of covers of a space X satisfying the condition:

(M) If $\{K_i | i=1, 2, \cdots\}$ is a decreasing sequence of non-empty sets of X such that $K_i \in St(x_0, \mathcal{U}_i)$ for each i and for some fixed point x_0 of X, then $\bigcap_{i=1}^{\infty} \overline{K}_i \neq \phi$.

A space is a $w\Delta$ -space if there exists a sequence $\{U_i\}$ of open covers satisfying (M) (C. Borges [3]). A space is an *M*-space if there exists a normal sequence $\{U_i\}$ of open covers satisfying (M). (K. Morita [8]). A space is an *M**-space if there exists a sequence $\{U_i\}$ of locally finite closed covers satisfying (M) (T. Ishii [6]). A space is an *M**space if there exists a sequence $\{U_i\}$ of closure-preserving closed covers satisfying (M).

The results of this paper have been partially announced in [17] and [18].

A. Okuyama [16] has shown that a collectionwise normal σ -space has a σ -discrete net. However we have the following

^{*)} The latter author is supported by NSF Grant, GP 5674.