134. On Some Trigonometric Series

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia
(Comm. by Zyoiti Suetuna, m. J. A., Sept. 12, 1968)

1. Introduction and Theorems. 1.1. Let us consider a trigonometric series

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

If we write $r_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}$, then the series (1) can be written in the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{n} \cos \left(n x+c_{n}\right), \quad-\pi / 2 \leqq c_{n}<3 \pi / 2 \tag{2}
\end{equation*}
$$

We denote by α_{0} the root of the equation

$$
\int_{0}^{3 \pi / 2} x^{-\alpha} \cos x d x=0
$$

It is known that $\alpha_{0}=0.30844 \cdots$.
In the case $c_{n}=0(n=1,2, \cdots)$ in (2), we have proved the following theorems [1], as generalization of Chowla's and Selberg's theorems [2].

Theorem I. If the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ diverges for $a \beta, 0 \leqq \beta<\alpha_{0}$, then

$$
\lim _{N \rightarrow \infty} \sup \left\{-\min _{0 \leq x<\pi}\left(\sum_{n=1}^{N} r_{n} \cos n x / \sum_{n=1}^{N} r_{n}\right)\right\} \geqq A(\beta)
$$

where $A(\beta)=-(1-\beta)(2 /(3 \pi))^{1-\beta} \int_{0}^{3 \pi / 2} x^{-\beta} \cos x d x>0$. The constant $A(\beta)$ is the best possible one.

Theorem II. Let $0 \leqq \beta<\alpha_{0}$. If there exist $A>0$ and $\lambda, 0 \leqq \lambda$ $<1-\beta$ such that

$$
\sum_{n=1}^{N} r_{n} \cos n x \geqq-A N^{\lambda} \quad \text { for all } x \text { and all } N,
$$

then the series $\sum_{n=1}^{\infty} r_{n} / n^{1-\beta}$ converges.
1.2. For non-vanishing $\left(c_{n}\right)$, Chidambaraswamy and Shah [3] have proved the following generalization of Chowla's and Selberg's theorems [2].

Theorem III. If $r_{0}>0$,

$$
\sum_{n=0}^{N} r_{n} \cos \left(n x+c_{n}\right) \geqq 0 \quad \text { for all } x \text { and all } N
$$

