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(Comm. by Kenjiro SIODA, M. r. A., Sept. 12, 1968)

The main purpose of this note is to prove the following two
theorems :"

Theorem A. Let R be a semi-prime Goldie ring, let Q be the right
quotient ring of R, and let R, (i-1, ..., t) be the minimal annihilator
ideals) of R. Let M be a semi-prime R-module, let M, be the subiso-
morphism classes of basic su-bmodules3 of M which corresponds to R,
and let J, bea uniform right ideal contained in R, (i= 1, ..., t). Then

( ) There exists an element x, e M, such that I,--Homn(x,J,, x,J,)
is a righ$ Ore domain. The ring D, Homn(x,J,Q, x,J,Q) is the right
quotient division ring of I, (i= 1, ..., t).

(ii) The ring I=Hom(N, N) is isomorphic onto Ix@...@I,,
where N- xlJl@. @xtJt.

(iii) The ring D-Homn(NQ, NQ) is the right quotient ring of I
and is isomorphic onto D@...3D,.

Theorem B. Let R be a Goldie ring. If M is a semi-prime R-
module, then M contains N, which is a direct sum of uniform sub-
modules and R is contained in semi-prime ring B such that the pair
(B, N) has the double centralizer property. The submodule N may be
chosen to be of the form xJ3.. "@xtJt, where x e M and J is a

uniform right ideal in R, (i-1, ..., t).
1. Proof of Theorem A. Lemma 1. Let M be a semi-prime

R-module and let Q be the right quotient ring of R. Then the in]ective
envelope M of M is MQ.

Proof. Let x-mc- be a non-zero element of MQ. Then xc=m

e M xR, which implies that MQ is an essential extension of M. Sup-
pose that M’ is an essential extension of M, then M’*-0 and M’ is

faithful. Hence, by Proposition 1 in [7], M’ is also semi-prime. By
Proposition 4.1 in [3], we have MQ=M’QM’, which proves the

lemma.
Since MQ is the injective envelope of M and Ma=0, we may

1) Throughout this paper, definitions and notations are used in the same

sense as in [7]. R will denote a right Goldie ring and all R-modules will mean

faithful right R-modules.
2) Cf. [5. p. 215].
3) Cf. [7. Theorem 7].


