205. On Generalized Integrals. III

By Shizu NAKANISHI University of Osaka Prefecture (Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1968)

In the preceding papers [3], we showed that the special (E.R.)integral is defined as a unique and natural extension of integrals (defined as usual) of step functions, using the method of the ranked space. In fact, to do this, we introduced on the set \mathcal{E} of step functions on [a, b] a set of neighbourhoods, denoted by $V(A, \varepsilon; f)$, and a rank so that \mathcal{E} should become a ranked space. In this ranked space \mathcal{E} , we see that if $u: \{V_n(f_n)\}$ is a fundamental sequence of neighbourhoods, the limit $f(x) = \lim_{n \to \infty} f_n(x)$ exists almost everywhere, and the sequence of integrals $\int_a^b f_n(x) dx$ converges to a finite limit. Moreover, if $u: \{V_n(f_n)\}$ and $v: \{V_n(g_n)\}$ are two fundamental sequences belonging to the same maximal collection u^* , then we have

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} g_n(x) \quad \text{a.e.,}$$
$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \lim_{n \to \infty} \int_a^b g_n(x) dx.$$

Therefore, each maximal collection u^* in \mathcal{E} determines a function and a value which we can associate to this u^* . $J(u^*)$ denotes the function and $I(u^*)$ denotes the value. If we denote, by U, the set of all maximal collections u^* , we have $J(u^*) \neq J(v^*)$ for $u^* \in U$ and $v^* \in U$ such that $u^* \neq v^*$. We denoted, by K, the set $\{J(u^*); u^* \in U\}$, and for each $f=J(u^*)$, we defined the integral I(f) of f by taking the value $I(u^*)$. Then, K coincides with the set of (E.R.) integrable functions in the special sense (or A-integrable functions) and we have $I(f) = (E.R.) \int_a^b f(x) dx$ $= (A) \int_a^b f(x) dx$. In this paper, we will show that if we reasonably introduce a set of neighbourhoods and a rank on K, then the ranked space K is a completion of the ranked space \mathcal{E} (Theorem 3). Moreover, the special (E.R.) integral is the r-continuous extension of integrals of step functions, and it is a r-continuous linear functional on the complete ranked space K (Theorem 4).

In order to introduce the notion of completion in the ranked spaces,¹⁾ we first recall a few basic concepts in the general ranked spaces. Throughout this paper, we suppose that the ranked spaces

¹⁾ For the problem of the completion of the ranked spaces, see [1] and [5].