199. On a Problem of MacLane

By Jirokichi NAGATOMO
Department of Mathematics, Chiba University, Chiba
(Comm. by Zyoiti SUETUNA, M. J. A., Nov. 12, 1968)

1. Let f(z) be a non-constant holomorphic function in $\{|z|<1\}$, having asymptotic values at each point of a dense subset on $\{|z|=1\}$. Such a function is said to belong to the class \mathcal{A} (MacLane [1]). MacLane proposed a problem:

If f(z) and g(z) belong to \mathcal{A} , do f(z)+g(z) and f(z)g(z) belong to \mathcal{A} ?

Ryan and Barth [2] answered to this negatively, and raised a further question:

If $f(z) \in \mathcal{A}$ and b(z) is bounded, are $b(z)f(z) \in \mathcal{A}$? (We suppose, of course, that b(z)f(z) is not a constant.)

In the present note, we will answer to this positively but only partly. That is, we will prove the following

Theorem A. Let b(z) be a function, holomorphic and bounded in $\{|z| \le 1\}$, having non-zero Fatou limits on $\{|z| = 1\}$ except on a set of the first Baire category. Then, if $f(z) \in \mathcal{A}$, we have $b(z) f(z) \in \mathcal{A}$.

2. For the sake of convenience, we repeat the definitions due to MacLane [1], with slight modifications in notations.

An arc $\Gamma: z=z(t)$, $0 \le t < 1$, in $\{|z|<1\}$ is said to be the path ending at a point ζ , $|\zeta|=1$, if $z(t)\to \zeta$ as $t\to 1$. A function f(z) is said to have an asymptotic value a ($a=\infty$ permitted) at ζ , if there exists a path Γ ending at ζ on which f(z) has the limit a, i.e., if $f(z(t))\to a$ as $t\to 1$. The set of these points is denoted by $A_f(a)$. That is, $A_f(a)$ is the set at each point of which f(z) has the asymptotic value a. We put

$$A_f^* = \bigcup_{a \neq \infty} A_f(a), \qquad A_f = A_f^* \cup A_f(\infty).$$

A function f(z) is defined to belong to the class \mathcal{A} if f(z) is holomorphic and non-constant in $\{|z|<1\}$ and the set A_f is dense on $\{|z|=1\}$.

Next we define the sets B_f^* and B_f . A point ζ , $|\zeta|=1$, belongs to B_f^* if and only if there exists a path Γ ending at ζ , on which f(z) is bounded by some finite constant M. The bound M may vary as ζ and Γ vary. We put

$$B_f = B_f^* \cup A_f(\infty)$$
.

f(z) is defined to belong to the class \mathcal{B} if f(z) is holomorphic and non-constant in $\{|z|<1\}$ and the set B_f is dense on $\{|z|=1\}$.

The set $\{z ; |f(z)| = \lambda\}$, where $\lambda \ge 0$ is a constant, is called *level set*