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Projective Spaces and Some Free Differentiable
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1. Introduction and preliminary lemmas. Sullivan has proved
that the concordance classes of smoothing the combinatorial complex
projective space is in one-to-one correspondence with the c-orientation
preserving diffeomorphism classes where ¢ is the generator of H*(CP™)
(see [6]). The conjugation map g: (e, - - -, €,)—(&, - - -, &,) (the complex
conjugation) induces the diffeomorphism g : CP*—CP" such that g,(c)
=—c. Let s:[CP", PD/O]-S(CP") be the natural correspondence
from the concordance classes to the smooth structures. If s(c,)=CP~
(the natural smooth structure) and s(c,)=CP’™ and if there exists a
diffeomorphism d:CP*»—CP"™ such that d,(c)= —c (where ¢ is deter-
mined by the concordance class), then (dg).(c)=d,g9.(c)=d.(—¢c)=c,
i.e., the composed diffeomorphism d.g induces the c-orientation pre-
serving diffeomorphism. This implies that two concordance classes
¢, C, such that s(c,) =s(c,)=CP" are equivalent.

The inertia group of a smooth manifold M~ is interpreted as fol-
lows. (For the definition of the inertia group, see [6]). We may as-
sume that the smooth structure M» corresponds to the zero element
0e[M, PD/O].

Lemma 1. I(M™)=(s7)~Y(M"™)
where § denotes the homomorphism of the Puppe’s exact sequence

—[M/M-Int D, PD/O]-j»[M, PD/O]—[M-Int D, PD/O]—-.
Therefore, to study the inertia group I(CP*), we have only to study
the following Puppe’s exact sequence,

—[SCP*~, PD/015[S*, PD/015[CP», PD/0O]—.
Let f be the attaching map f:0de*»—CP»! of the 2n-cell ¢ in CP~»
and S(f) be its suspension map. Then we shall have

Lemma 2. 0={S(NH}*
where {S(f)}* denotes the homomorphism induced by S(f).

It is well-known that every free differentiable action of S* (or S?)
on a homotopy sphere S» is always a principal fibration (see [2]) and
that this fibration is homotopically equivalent to the classical Hopf
fibration (see [4]). Therefore the bundle-theoretic approach to smooth-



