8. A Note on Filipov's Theorem

By Jun-iti NAGATA¹⁾

Department of Mathematics, University of Pittsburgh

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 13, 1969)

V. V. Filipov [1] proved the following theorem:

Filipov's Theorem. A paracompact M-space with a point-countable open basis is metrizable.²⁾

On the other hand A. Okuyama [4] proved

Okuyama's Theorem. A space X is metrizable if and only if it is a paracompact M-space, and the diagonal of the product space $X \times X$ is a G_s -set.

These two metrization theorems for an *M*-space look like to be considerably different, but the fact is that we can easily form a theorem which includes both of them as corollaries.

Theorem. A space X is metrizable if and only if it is a paracompact M-space with a point-countable collection U of open sets such that for any different points x and y of X there is $U \in U$ satisfying $x \in U$ and $y \notin U$.

Proof. We shall prove only the sufficiency. The proof is a slight modification of Filipov's, and we make a full use of the following Miščenko's theorem [2] as Filipov did:

Miščenko's Theorem. Let \mathcal{U} be a point-countable collection of subsets of a set X and X' a subset of X. Then there are at most countably many finite minimal covers (=coverings) of X' by elements of \mathcal{U} , where we mean by a minimal cover a cover which contains no proper subcover.

Now let us assume that X is a space satisfying the conditions in the theorem. Since X is a paracompact M-space, there is a metric space Y and a perfect mapping f from X onto Y. Note that for each $x \in Xf^{-1}f(x)$ is a compact set of X, and we shall denote this set by F_x throughout this paper. For each natural number n we denote by \mathcal{O}_n a locally finite open cover of Y such that mesh $\mathcal{O}_n = \sup \{diameter of \}$

¹⁾ Supported by NSF Grant GP-5674.

²⁾ Actually he used the terminology 'p-space' instead of 'M-space', but for a paracompact space the two concepts, M-space (due to K. Morita) and p-space (due to A. Arhangelskii) coincide with each other, and a paracompact M-space is characterized as the inverse image of a metric space by a perfect mapping. As for terminologies and symbols in this paper see J. Nagata [3]. Also note that all spaces in this paper are Hausdorff spaces.