2. A Note on the Metrizability of M-Spaces

By Harold R. Bennett
Texas Technological College
(Comm. by Kinjirô Kunugi, M. J. A., Jan. 13, 1969)

The notion of an M-space was introduced by Morita in [6] and in [1] Okuyama gave conditions for an M-space to be metrizable. Recently Borges, in [2], generalized some of Okuyama's work by considering $w \Delta$-spaces. In this note a condition is given under which a $w \Delta$-space is a Moore space.

The terminology of [4] will be used except all spaces will be T_{1}.
Definition 1. A space X is said to be a $w \Delta$-space if there exists a sequence $\left\{B_{1}, B_{2}, \cdots\right\}$ of open covers of X such that for each $x_{0} \in X$, if $x_{n} \in \operatorname{St}\left(x_{0}, B_{n}\right)$ for each natural number n, then the sequence $\left\{x_{1}, x_{2}, \cdots\right\}$ has a cluster point.

Definition 2. A space X is said to be an M-space provided there exists a normal sequence ${ }^{1)}$ of open coverings of X satisfying the following: If $\left\{A_{1}, A_{2}, \cdots\right\}$ is a sequence of subsets of X with the finite intersection property and if there exists $x_{0} \in X$ such that for each natural number n there exists some $A_{k} \subset \operatorname{St}\left(x_{0}, B_{n}\right)$, then

$$
\bigcap_{i=1}^{\infty} A_{i}^{-} \neq \emptyset .
$$

Clearly all metrizable or countably compact spaces are M-spaces. In [2], Borges shows that each M-space is also an $w \Delta$-space.

Definition 3. Let X be a regular space. Then X is a quasi-developable space if there exists a sequence $\left\{G_{1}, G_{2}, \cdots\right\}$ of collections of open subsets of X such that if $x \in X$ and R is an open subset of X containing x, then there is a natural number $n(x, R)$ such that some element of $G_{n(x, R)}$ contains x and each member of $G_{n(x, R)}$ that contains x lies in R. The sequence $\left\{G_{1}, G_{2}, \cdots\right\}$ is called the quasi-development for X.

Notice that if, in Definition 3, it is also required that each G_{i} be a cover for X, then X satisfies the first three parts of Axiom 1 of [5] and X is called a Moore space. In this case $\left\{G_{1}, G_{2}, \cdots\right\}$ is called a development for X.

Quasi-developable spaces are investigated extensively in [1] where

[^0]
[^0]: 1) A sequence $\left\{U_{1}, U_{2}, \cdots\right\}$ of open covers of a topological space X is a normal sequence if for each natural number $n \operatorname{St}\left(x, U_{n+1}\right)$ is contained in some element of U_{n}, for each $x \in X$.
