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32. Mappings and M-Spaces
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(Comm. by Kinjird KUNUGI, M. J. A., March 12, 1969)

Let us recall some of the interesting theorems on metric spaces
and compact spaces in relation with maps (=mappings). (As for the
references and proofs of these theorems as well as terminologies and
symbols, see J. Nagata [4] and [5]. All spaces are at least Hausdorff,
and all maps are continuous in the present paper unless the contrary
is explicitly mentioned.)

1. A T -space, not necessarily Hausdorff, is the image of a metric
space by an open continuous map iff (=if and only if) it is 1-st countable
(V. Ponomarev-S. Hanai).

2. Every metric space with weight | A| (=the cardinality of the
set A) is the image of a subset of Baire’s 0-dimensional space N(A)
(=the product of countably many copies of the discrete space A) by a
perfect map. (K. Morita)

3. Every compact (Hausdorff) space with weight |A| is the
continuous image of a closed set of the cantor discontinum D(4).
(P. S. Alexandroff)

4, Every metric space with weight |A| is homeomorphic to a
subset of generalized Hilbert space H(A). (C. H. Dowker)

5. Every compact space with weight |A| is homeomorphic to a
closed subset of the product of the copies I, & € A, of the unit interval
[0,1]. (A. Tychonoff-P. Urysohn)

As well known, the concept of M-space (paracompact M-space) is
an important generalization of that of metric space as well as countably
compact space (compact space). Therefore it is natural to try to
extend the above theorems to M-spaces and paracompact M-spaces.
The purpose of the present paper is to continue our study along this
line which started in our previous paper [5].

Theorem 1. A regular space Y is a g-space in the sense of E.
Michael [1] iff there are an M-space X and a continuous open map f
from X onto Y.

Proof. Sufficiency directly follows from the condition satisfied
by X and Y by use of Lemma 1 of [6]. To prove necessity we should
note that a regular space is a ¢-space iff each point has a sequence
U, U, --- of open nbds (=neighborhoods) such that U,>U,oU,
>U,>--- and such that if ;e U, i=1,2, ---, then {z;|i=1,2, ---}



