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1. Introduction. We consider the following fourth order partial
differential equation

(1) 0%y 0t*=(1+ a(0y | 0x)**)d%y | 0x*— Bd*y [ dx*,
where a and 8 are positive constants and p=1,2, . . ., which is deeply
connected with the study of the anharmonic lattice (see [1]).

Here we congider the initial-boundary value problem for (1) with
initial values

(2) y(0, )=f(x),  0y/dt0, x)=g(x),
and with periodic boundary condition
(3) y(it, )=y, z+1) for all x and .

Then we have the following theorem being concerned with the global
solution for the problem :

Theorem. For every a>0, 3>0, and for every real 1-periodic
wmitial functions fe W®(0,1), g W0, 1), there exists the unique
function which satisfies (1), (2) and (8) in the classical sense in the
whole (t, x) plane.

The method of proof is the semi-discrete approximation similar
to that presented by Sjoberg [2].

The authors were announced by Nisida [3] that he independently
treated the same problem by means of the theory of semi-groups.

2. Proof of existence of the global solution. In order to prove
the existence of the desired solution we employ the following semi-
discrete approximation :
d*yy(t, x,)/dt*=D [D_yy(t, z,)+ a(D_yy(t, ,)?* |2p+1]

_BDiDEyN(ts CL',,), 7/‘:1’2’ © ',N
yN(O» x,):f(oc,), dyN/dt(Oy %):g(x,), 7'=1a 2’ et ,N’
yN(ty xr)zyN(t, xr+N)’ /":1, 2’ ) N and all ¢
where the mesh-width 2=1/N, N natural number, x,=rh and the
difference operators D, and D_ are defined by

hD y(z,) =y, )—y(x,),  hD_y(x,)=y,)—y,_,).

For every h>0 the solution of the problem (4) uniquely exists on
the basis of the theory of ordinary differential equations. The solu-
tion yy(t, x,), fixed N, is a grid-function defined for x,=rh. We may
write yy(t, z,)=v,(t) for the sake of simplicity.
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