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In [2], we have introduced the notion of the Dirichlet space
relative to an L2-space (we will call this an L2-Dirichlet space). The
purpose of this paper is to derive a normed ring (called a Dirichlet
ring) from any given L2-Dirichlet space in the similar manner as
Royden ring [5] from the space of functions with finite Dirichlet inte-
grals. Dirichlet rings will enable us to define a natural equivalence
relation among the collection of all L-Dirichlet spaces. We will dis-
cuss elsewhere the problem to find out nice versions from each equiva-
lence class ([3]).

1. L.Dirichlet spaces and L.resolvents.
We call (X, m, F, C) a complex L-Dirichlet space (in short, a D-

space) if the following conditions are satisfied.
(1.1) X is a locally compact Hausdorff space.
(1.2) m is a Radon measure on X.
(1.3) F is a linear subspace of complex L2(X)=L2(X; m),
two functions being identified if they coincide m-a.e, on X. ’ is a
non-negative definite bilinear form on F and, for each a>0, is a
complex Hilbert space with inner product

"(u, v)-(u, v)+ a(u, v),
where (u, V)x is the inner product in L2(X)-sense.
(1.4) Each normal contraction operates on (F, ’)"
if u e and a measurable function v satisfies

v(x) <= u(x) v(x)--v(y)l <= u(x)--u(y)l m-a.e,
then v e F and ’(v, v)_<_ ’(u, u).

Let (X, m) be as above. We call a family of linear bounded sym-
metric operators {G., c>0} on L2(X) an L2-resolvent iff it satisfies the
resolvent equation and it is sub-Markov" for each c>0, G translates
each real function into a real function and O<_cG.u<=l m-a.e for
u L2(X) such that 0=< u<= 1 m-a.e.

There is a one-to-one correspondence between the class o D-spaces
and the class of L-resolvents ([2]).

In fact, with any D-space (X, m, F, ), we can associate an L2-

resolvent by the equation
(1.5) "(G.u, v)-(u, v)x for any v e ,


