92. Angular Cluster Sets and Oricyclic Cluster Sets

By Niro Yanagihara

Department of Mathematics, Chiba University, Chiba

(Comm. by Zyoiti SUETUNA, M. J. A., June 10, 1969)

1. Let G be the unit disk |z| < 1 and Γ be its circumference |z| = 1. For a point $\zeta \in \Gamma$, let $V = V(\zeta)$ be an angle with vertex at ζ and $K = K(\zeta)$ be an inscribed disk at ζ , that is,

$$K(\zeta) = \{z; |z-\rho\zeta| < 1-\rho\},$$

where ρ is a constant, $0 < \rho < 1$.

For a function f(z) given in G, we set

$$C(\zeta, K) = C(\zeta, K, f)$$

 $=\{a : \text{there is a sequence } z_{\nu} \in K(\zeta), z_{\nu} \rightarrow \zeta, f(z_{\nu}) \rightarrow a\}.$

 $C(\zeta, V) = C(\zeta, V, f)$ is defined similarly.

We put

$$C_{\mathfrak{A}}(\zeta,f) = \bigcup_{V} C(\zeta,V,f), \quad C_{\mathfrak{D}}(\zeta,f) = \bigcap_{K} C(\zeta,K,f),$$

where summation and intersection are taken over all $V(\zeta)$ and $K(\zeta)$. $C_{\mathfrak{A}}$ and $C_{\mathfrak{D}}$ are called angular cluster set and oricylic cluster set, respectively [2].

Obviously $C_{\mathfrak{A}} \subset C_{\mathfrak{D}}$. We will show here that $C_{\mathfrak{A}}(\zeta, f) = C_{\mathfrak{D}}(\zeta, f)$ except on a set of σ -porosity of the order 1/2 (see the definition below), for any arbitrary function f(z).

If $C_{\mathfrak{F}}(\zeta, f)$ is the fine cluster set at ζ [4], Brelot and Doob [4] proved that $C_{\mathfrak{A}}(\zeta, f) \subset C_{\mathfrak{F}}(\zeta, f)$ for harmonic or holomorphic f(z). Since $K(\zeta)$ is a fine neighborhood of ζ , we have $C_{\mathfrak{A}} \subset C_{\mathfrak{F}} \subset C_{\mathfrak{D}}$. Thus the relation between $C_{\mathfrak{A}}$ and $C_{\mathfrak{D}}$ will suggest some relation between $C_{\mathfrak{A}}$ and $C_{\mathfrak{F}}$.

2. Let us define some notions. A KK (or VV)-singular point is the point $\zeta \in \Gamma$ such that $C(\zeta, K', f) \neq C(\zeta, K'', f)$ (or $C(\zeta, V', f) \neq C(\zeta, V'', f)$) for some pair of inscribed disks $K'(\zeta)$ and $K''(\zeta)$ (or angles $V'(\zeta)$ and $V''(\zeta)$). The set of all KK (or VV)-singular points is called KK (or VV)-singular set and denoted by $E_{KK}(f)$ (or $E_{VV}(f)$).

A GK (or GV)-singular point is the point $\zeta \in \Gamma$ such that $C(\zeta, K, f) \neq C(\zeta, f)$ (or $C(\zeta, V, f) \neq C(\zeta, f)$) for some $K(\zeta)$ (or $V(\zeta)$), where $C(\zeta, f)$ is the cluster set at ζ , that is,

 $C(\zeta, f) = \{a : \text{ there is a sequence } z_{\nu} \in G, z_{\nu} \rightarrow \zeta, f(z_{\nu}) \rightarrow a\}.$ $GK \text{ (or } GV)\text{-singular set is denoted by } E_{GK}(f) \text{ (or } E_{GV}(f)).$

KV-singularity is defined analogously.

For a $\varepsilon > 0$, we set $U_{\varepsilon}(\zeta) = \{z : |z - \zeta| < \varepsilon\}$ (ε -neighborhood). Sup-