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1. Let G be the unit disk |2| <1 and I be its circumference |z|
=1. For a point { e, let V=V({) be an angle with vertex at { and
K=K() be an inscribed disk at {, that is,

KQ={z; |2—pl| <1—p},
where p is a constant, 0<p<1.
For a function f(z) given in G, we set
={a; there is a sequence z, € K({), 2,—(, f(z,)—a}.
C,V)=C(,V, f) is defined similarly.
We put
C%I(C’ f):LVJ C(C» V: f)’ CSD(C’ f):Q C(C’ K’ f)’

where summation and intersection are taken over all V({) and K({).
Cu and Cgp are called angular cluster set and oricylic cluster set, re-
spectively [2].

Obviously CacCp. We will show here that Cy(&, /)=Co({, )
except on a set of g-porosity of the order 1/2 (see the definition below),
for any arbitrary function f(z).

If Cx(, f) is the fine cluster set at { [4], Brelot and Doob [4]
proved that Cu(l, ) Cy(, /) for harmonic or holomorphic f(z).
Since K({) is a fine neighborhood of {, we have CycCgcCpo. Thus
the relation between Cy and Cgo will suggest some relation between Cy
and Cg.

2. Let us define some notions. A KK (or VV)-singular point
is the point { eI such that C(,K’, )=CKE, K", f) (or C&, V', f)
#=C(, V", 1)) for some pair of inscribed disks K'({) and K”/({) (or an-
gles V'({) and V”({)). The set of all KK (or VV)-singular points is
called KK (or VV)-singular set and denoted by E (/) (or Ey,(f)).

A GK (or GV)-singular point is the point eI such that
C& K, N#CE, 1 (or CK&,V, N#CE, ) for some KQ) (or V),
where C({, f) is the cluster set at {, that is,

C¢, f)={a; there is a sequence z, ¢ G, 2,—, f(z,)—a}.
GK (or GV)-singular set is denoted by E;x(f) (or Eg,(f)).
KV-singularity is defined analogously.
For a ¢>0, we set U({)={z; |2—{| <¢} (e-neighborhood). Sup-



