133. On Conservativity of Algebraic Function Fields

By Tetsuzo KIMURA Nippon Kogyo Daigaku

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1969)

1. Let K be a field of algebraic functions of one variable over a field k of characteristic $p \neq 0$. Throughout this note, we assume that K is separable over k and k is algebraically closed in K. If the genus of K/k is invariant under any constant field extension of K/k, we say that K/k is conservative. E. Artin has proved that K/k is conservative if and only if for all finite purely inseparable constant field extensions \tilde{K}/\tilde{k} of K/k, the genus of K/k is equal to the genus of K/k (Chapter 15 of [1]).

Let K/k be as above, $M = \bigcup_{i=1}^n M_i$ a complete normal model of K/k, where M_1, \dots, M_n are affine models defined by affine k-algebras A_1, \dots, A_n respectively. Furthermore, we assume that each A_i is isomorphic to $k[X_{i1}, \dots, X_{it_i}]/\alpha_i$, where $k[X_{i1}, \dots, X_{it_i}]$ is a polynomial ring and α_i is a prime ideal of $k[X_{i1}, \dots, X_{it_i}]$. In this note, we fix a normal complete model M and a set of equations for M, i.e., the union $\bigcup_{i=1}^n B_i$ where $B_i = \{F_{i1}(X), \dots, F_{is_i}(X)\}$ is a basis of α_i . Let Ω be the set of all coefficients in the equations belonging to the set of equations for M, $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ a p-basis of $k^p(\Omega)$ over k^p and let $\Delta^{p-1} = \{\alpha_1^{p-1}, \alpha_2^{p-1}, \dots, \alpha_m^{p-1}\}$. Then we have the following:

Theorem. K/k is conservative if and only if the genus of K/k is equal to the genus of $K(\Delta^{p-1})/k(\Delta^{p-1})$.

- Remark. (1) We say that an algebraic function field \tilde{K}/\tilde{k} is a constant field extension of K/k if $\tilde{K} = \tilde{k}K$ and K is free from \tilde{k} over k. If we choose the above $a_i^{p-1}(i=1, 2, \dots, m)$ from a fixed complete field k^* which contains k, then we can construct the constant field extension $K(\Delta^{p-1})/k(\Delta^{p-1})$ of K/k by the method of Chevalley [2].
- (2) Let M and A_i ($i=1,2,\cdots,m$) be as stated above. Then the model of $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$ defined by $k(\Delta^{p^{-1}})[A_i]$ ($i=1,2,\cdots,n$) is denoted by $M\otimes k(\Delta^{p^{-1}})$ (to prove Theorem, we shall consider this model $M\otimes k(\Delta^{p^{-1}})$ as a model over k). The geometric genus of M (resp. $M\otimes k(\Delta^{p^{-1}})$) is equal to the genus of K/k (resp. $K(\Delta^{p^{-1}})/k(\Delta^{p^{-1}})$) (cf. §6 of [4]).
- (3) By a differential constant field for M (or K/k), we mean a field k_0 which satisfies the following three conditions: