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1. Introduction and the main results.
Let G and be two locally compact abelian groups in Pontrjagin

duality. The integration with respect to a suitably normalized Haar
measure on G is indicated by the expressions such as

( 1 If(x) dx

Let C(G) denote the space o all continuous complex-valued unc-
tions on G each o which vanishes outside o some compact set, and
Co(G) the set of continuous functions each o which vanishes at infinity.
We shall denote A(G) (l_<pc) the space of functions f in LI(G)
whose Fourier transforms ] belong to L() (p 1) and with the norm
defined by
( 2 ) f f +f
where lfl= of(x) dx and IIf-- f(x)l d2 d denotes the

integration with respect to Haar measure on . Clearly, A(G) is a
dense ideal in L(G) and is a Banach algebra under convolution with
the norm . [ (see Larsen, Liu and Wang [6]).

We denote T and T the Fourier transforms on L(G) and L(G)
That is

Tf() (-- x, &)f(x) dx

Tlf I1 -- f II1
T2f 112-- f 112.

If f e C(G), the Fourier transform T is defined by the usual expres-
sion

5 ) Tf(&)--f (--x, )f(x) dx,(
JG

and Tff-- Tf-- Tf or every f e C(G). Throughout this present note,
we suppose essentially that 1 p 2 and 1/p + 1/q= 1. A. Weil [9
pp. 116-117] has shown, by using the convexity theorem of M. Riesz
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