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1. We admit as 2-cells the homeomorph of any convex polygon,”
regarding the vertices and edges of this image as 0 and 1-cells
respectively. An i-complex is a connected set of a finite number of
i-cells (¢=1,2) and the characteristic p of a complex is defined as
p=—0a,+a,—a, where a, is the number of i-cells (=0, 1,2) in the
complex. The object of this paper is to give another proof to a
theorem of Nevanlinna? on harmonic functions and to show that the
characteristic of a domain plays an important rolle.

Let D be a domain or the union of a finite number of domains and
D be its closure. We divide D in a finite number of 2-cells and
consider D as a union of 2-complexes. We denote by a; and @] the
number of i-cells (=0, 1, 2) contained in D and D respectively. Then
p(D): —a,+a,—a, and p(D)= —a;+ a;—a; are the sums of the charac-
teristics of all connected components of D and D respectively. A 1-
complex representing a simple closed curve has the same number of
0-cells as 1l-cells and so contributes nothing to the characteristic.
Hence we have p(D)= p(D_), when the boundary of D consists of a
finite number of simple closed curves.

Let w(z) be a harmonic function in a domain D and C(u) be the
niveau curve: u(2)=const.=u. The critical points of w(2) in the
ordinary sense are the points z=x 44y at which %:%:0. Let v(z)
be the conjugate harmonic function of wu(z) and w(z)=u(z)+w(2).
Then, by virtue of Cauchy-Riemann differential equation, such a
point is a zero of w/(z). The order of the zero is said to be the
multiplicity of a critical point. Let k—1 be the multiplicity of a
critical point z, of u(z), then the niveau curve C(u) through z, consists

of & curves neighbouring z,, each making an angle of % at z, with its
successor.

2. Let D be a domain bounded by m simple closed curves C,, C,,
..., C, and a be a set of a finite number of arcs on the boundary of
D. We denote by n the number of arcs contained in «, which do not
coinside with any of the whole curve C,. Let u(z)=w(z, a, D) be the
harmonic measure of a at the point z in D. We have 0<u(2)<1in D



