124. On the Critical Points of Harmonic Functions

By Tokunosuke Yosida Kyoto Technical University

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1969)

1. We admit as 2-cells the homeomorph of any convex polygon, pregarding the vertices and edges of this image as 0 and 1-cells respectively. An *i*-complex is a connected set of a finite number of *i*-cells (i=1,2) and the characteristic ρ of a complex is defined as $\rho = -a_0 + a_1 - a_2$ where a_i is the number of *i*-cells (i=0,1,2) in the complex. The object of this paper is to give another proof to a theorem of Nevanlinna²⁾ on harmonic functions and to show that the characteristic of a domain plays an important rolle.

Let D be a domain or the union of a finite number of domains and \bar{D} be its closure. We divide \bar{D} in a finite number of 2-cells and consider \bar{D} as a union of 2-complexes. We denote by a_i and a_i' the number of i-cells (i=0, 1, 2) contained in \bar{D} and D respectively. Then $\rho(\bar{D}) = -a_0 + a_1 - a_2$ and $\rho(D) = -a_0' + a_1' - a_2'$ are the sums of the characteristics of all connected components of \bar{D} and D respectively. A 1-complex representing a simple closed curve has the same number of 0-cells as 1-cells and so contributes nothing to the characteristic. Hence we have $\rho(D) = \rho(\bar{D})$, when the boundary of D consists of a finite number of simple closed curves.

Let u(z) be a harmonic function in a domain D and C(u) be the niveau curve: u(z) = const. = u. The critical points of u(z) in the ordinary sense are the points z = x + iy at which $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$. Let v(z) be the conjugate harmonic function of u(z) and w(z) = u(z) + iv(z). Then, by virtue of Cauchy-Riemann differential equation, such a point is a zero of w'(z). The order of the zero is said to be the multiplicity of a critical point. Let k-1 be the multiplicity of a critical point z_0 of u(z), then the niveau curve C(u) through z_0 consists of k curves neighbouring z_0 , each making an angle of $\frac{\pi}{k}$ at z_0 with its successor.

2. Let D be a domain bounded by m simple closed curves C_1 , C_2 , ..., C_m and α be a set of a finite number of arcs on the boundary of D. We denote by n the number of arcs contained in α , which do not coinside with any of the whole curve C_i . Let $u(z) = \omega(z, \alpha, D)$ be the harmonic measure of α at the point z in D. We have 0 < u(z) < 1 in D