113. On the Projective Cover of a Factor Module Modulo a Maximal Submodule*)

By Hisao KATAYAMA Ube Technical College

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1969)

1. Let R be a ring with 1 which has the Jacobson radical J(R). In [3], Koh has proved the following:

Every irreducible right R-module has a projective cover if and only if R is semiprimary and for any nonzero idempotent x+J(R) in R/J(R) there exists a nonzero idempotent e in R such that $ex-e \in J(R)$.

The purpose of the present paper is, as a generalization of the result of Koh, to show the following theorem:

Theorem. Let $M = M_R$ be a projective co-atomic module. Then the following statements are equivalent:

- (1) For every maximal submodule I of M, M/I has a projective cover.
- (2) M/J(M) is semisimple and for any nonzero idempotent $\hat{s} \in \hat{S}$ there exists nonzero idempotent $e \in S$ such that $\hat{e}\hat{s} = \hat{e}$.
- 2. Let $M=M_R$ be an unital right R-module. We write J(M) for the radical of M and \bar{M} for the factor module M/J(M). Let $S=\operatorname{Hom}_R(M,M)$ and let $\hat{S}=\operatorname{Hom}_R(\bar{M},\bar{M})$. As usual, we write these endomorphisms on the left of their arguments. We note that every $s \in S$ induces an $\hat{s} \in \hat{S}$, since $sJ(M) \subseteq J(M)$. For any submodule U of M, we denote by ν_U the natural epimorphism $M \to M/U$.

A submodule A of M is called small if A+B=M for any submodule B of M implies B=M. A projective cover of M is an epimorphism of a projective module P onto M with small kernel.

We call M is co-atomic if every proper submodule of M is contained in a maximal submodule of M. As is easily seen, if M is co-atomic, then J(M) is small in M (cf. [5]). It is well known that M has a maximal submodule if M is projective (cf. [1]), and we can show that semi-perfect modules defined in [4] are co-atomic as follows: Let T be any proper submodule of a semi-perfect module M, and let $P \rightarrow M/T \rightarrow 0$ be a projective cover of M/T with kernel K. Then $P/K \cong M/T$ and, since any maximal submodule of P contains K, T is contained in a maximal submodule of M as desired.

Lemma 1. Let M be a projective module and I a maximal

^{*)} Dedicated to Professor K. Asano for the celebration of his sixtieth birth-day.