171. On the Nörlund Summability of Fourier Series

By Masako IZUMI and Shin-ichi IZUMI

Department of Mathematics, The Australian National University, Canberra, Australia

(Comm. by Zyoiti SUETUNA, M. J. A., Nov. 12, 1969)

1. Introduction and Theorems.

1.1. Definitions. Let $\sum a_n$ be a given series and s_n be its *n*th partial sum. Let (p_n) be a sequence of real numbers such that $p_0=0$, $P_n=p_0+p_1+\cdots+p_n\neq 0$ for all *n* and $|P_n|\to\infty$ as $n\to\infty$. If the sequence (1) $t_n=\frac{1}{P_n}\sum_{k=0}^n p_{n-k}s_k$ $(n=1, 2, \cdots)$

tends to a limit s as $n \to \infty$, then the series $\sum a_n$ is said to be (N, p_n) summable to s. This method of summation is regular if and only if

(2)
$$\sum_{k=0}^{\infty} |p_k| \leq A |P_n|$$
 for all $n \geq 1$ and $p_n/P_n \rightarrow 0$ as $n \rightarrow \infty$.

Let f be an integrable function with period 2π and its Fourier series be

(3)
$$f(t) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(x).$$

We write $\varphi(t) = \varphi_x(t) = f(x+t) + f(x-t) - 2f(x)$.

1.2. E. Hille and J. D. Tamarkin [1] have applied the (N, p_n) summation to Fourier series. Extending one of their theorems, O. P. Vershney [2] has proved the following

Theorem I. Suppose that the sequence (p_n) of real numbers satisfies the conditions:

$$(4) n|p_n| \leq A|P_n|\log(n+1) for n \geq 1,$$

(5)
$$\sum_{k=1}^{n} \frac{k |\Delta P_k|}{\log (k+1)} \leq A |P_n| \quad \text{for all } n \geq 1$$

and

$$(6) \qquad \qquad \sum_{k=1}^{n} \frac{|P_k|}{k \log (k+1)} \leq A |P_n| \qquad for \ all \ n \geq 1.$$

If

(7)
$$\Phi(t) = \int_0^t |\varphi(u)| \, du = o\left(t/\log\frac{1}{t}\right) \quad \text{as } t \to 0,$$

then the Fourier series of f is (N, p_n) summable to f(x).

On the other hand O. P. Vershney [3] proved the

Theorem II. Let (p_n) be a positive non-increasing sequence. Then the Fourier series of f satisfying the condition

$$\varphi(t) = o\left(1/\log\frac{1}{t}\right)$$
 as $t \to 0$,