186. Realization of Irreducible Bounded Symmetric Domain of Type (VI)

By Mikio ISE (Comm. by Kunihiko Kodaira, m. j. a., Dec. 12, 1969)

1. This is a continuation of our preceding note [3] which appeared in these Proceedings. We shall present here, without proof, the *canonical bounded model* of the irreducible bounded symmetric domain of exceptional type (VI) in the sense of [4].

As was pointed out in [4], we need at first to describe explicitly the irreducible representation of the complex simple Lie algebra of type E_{τ} which is of the lowest degree, 56. Such a representation was previously discussed by several authors, for instance by H. Freudenthal; however a presentation of that representation which suited our purpose was recently given by R. B. Brown [1] for the first time. His result will be, therefore, briefly reproduced in the following sections 2-3. As for the notation we refer the reader to [3], [4].

2. Let \Im denote the exceptional simple Jordan algebra as described in [1]-[3]; namely \Im is the totality of the (3.3)-hermitian matrices over the complex Cayley numbers \Im . The canonical nondegenerate inner-product (u, v) in \Im will be introduced by (u, v) = Trace $(u \circ v), (u, v \in \Im)$ (cf. [1], [2], [5]), for which we consider the dual \Im^* of \Im and will identify hereafter \Im^* with \Im through this inner-product. Now we introduce a 56-dimensional complex vector space V by putting (1) $V = V_1 \oplus V_2 \oplus V_3 \oplus V_4$,

where both V_1 and V_4 are of 1-dimension and $V_2 = \mathfrak{F}^*$, $V_3 = \mathfrak{F}$. The element x of V is then written as

(2) $x = \alpha f_1 + u^* + v + \beta f_2; \alpha, \beta \in C, u, v \in \Im,$

where f_1, f_2 denote, respectively, the generators of V_1, V_4 and $u^* \in \mathfrak{F}^*$ is defined by $u^*(v) = (u, v)$ for all $v \in \mathfrak{F}$. After R. B. Brown we introduce in V a non-associative algebra structure \mathfrak{B} by the following rule:

i)
$$f_i f_i = f_1 \ (i=1, 2), \qquad f_1 f_2 = f_2 f_1 = 0$$

ii) $f_1 u = \frac{1}{3} u, \quad f_2 u = \frac{2}{3}; \quad f_1 v^* = \frac{2}{3} v^*, \quad f_2 v^* = \frac{1}{3} v^*$

iii)
$$uf_1=0$$
, $uf_2=u$; $v^*f_1=v^*$, $v^*f_2=0$

iv)
$$uv^* = (u, v)f_1, \quad u^*v = (u, v)f_2$$

v)
$$uv = 2(u \times v)^*$$
, $u^*v^* = 2(u \times v)$

 $(u, v \in \mathfrak{F})$, where the crossed product $u \times v$ in \mathfrak{F} is given through $(u \times v, w) = \mathfrak{Z}(u, v, w)$ (for $w \in \mathfrak{F}$), the right hand side being the tri-linear form on \mathfrak{F} obtained by linearizing the cubic from on \mathfrak{F} (see, [1], [5]):