184. On the Topological Entropy of a Dynamical System

By Shunji Ito

(Comm. by Kunihiko KODAIRA, M. J. A., Dec. 12, 1969)

§1. Preliminaries. Let φ be a homeomorphism from a compact space X onto itself. If α is any open cover of X, we let $N(\alpha)$ be the number of members in a subcover of α of minimal cardinality. As in [1], the limit exists in the following definition:

$$h(\alpha,\varphi) = \lim_{n \to \infty} \frac{1}{n} \log N(\bigvee_{i=0}^{n-1} \varphi^i \alpha)^{*})$$

and the topological entropy $h(\varphi)$ of φ is defined as $h(\varphi) = \sup h(\alpha, \varphi)$, where the supremum is taken over all open covers of X.

Let $\{\varphi_i\}$ be a homeomorphic flow on a compact space X. It was conjectured in [1] that

(F) $h(\varphi_t) = |t| h(\varphi_1)$ for all $t.^{**}$

In this paper, we will give a proof for (F) under the assumption that X is a compact metric space and that $\{\varphi_t\}$ is a dynamical system: namely,

(C) $\varphi_t x = \varphi(t, x)$ is continuous in the pair of variables t, x.

For later use, we will mention the well-known properties of the topological entropy [1]:

(1.1) if
$$\alpha < \beta$$
 then $h(\varphi, \alpha) \leq h(\varphi, \beta)$

(1.2) $h(\varphi_k) = |k| h(\varphi_1)$ for integer k.

§2. The theorem. Theorem. If X is a compact mentric space and $\{\varphi_t\}$ is a dynamical system. Then

(F) $h(\varphi_t) = |t| h(\varphi_1)$ for any real t.

Proof. For any pair $\varepsilon_1 > \varepsilon_2 > 0$, let α_i be the set of all open spheres of radius ε_i , i=1, 2. Then $\alpha_1 < \alpha_2$.

Put $A_t = \{x \mid d(\varphi_s x, x) < \varepsilon_1 - \varepsilon_2 \text{ for } |s| \leq t\}$, where d is the distance of X. Then, by the continuity of $\{\varphi_t\}$, the set A_t is an open set, and $A_t \subset A_{t'}$ if t > t', and moreover, $\bigcup_{t>0} A_t = X$. Thus, by the compactness

of X, there exists a positive real number t_0 satisfying $A_{t_0} = X$.

If t, t' are arbitrary pair of positive numbers and T is an arbitrary large positive number, there exist positive integers p, n and m such that $t/p \leq t_0$,

^{*)} As in [1], we write $\alpha \lor \beta = \{U \cap V : U \in \alpha \ V \in \beta\}$ and we write $\alpha > \beta$ to mean that α is a refinement of β .

^{**)} On the measure theoretic entropy (F) is proved in [2]; much simpler proof is given in [3].