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1. A formal power series f= f, a,X* with coefficients in a linearly
=0

topological ring A is called a restricted formal power series if the
sequence of its coefficients {a;} converges to 0. All of such formal
power geries forms a subring of the formal power series ring A[[X]],
which is called a restricted formal power series ring and denoted by
A{X}.

In [5], Samuel has obtained the following result:

Let A be a Noetherian complete local integral domain, and G a
finite group consisting of A-automorphisms of A[[X]]. Then there
exists a formal power series f such that the G-invariant subring of
A[[XT1] is AILfIT.

This is a generalization of the result of Lubin [2] which dealt with
the case where A is the ring of p-adic integers and G is given by using
a formal group law.

The main purpose of this paper is to prove the following:

Theorem. Let A be a Noetherian complete integral domain
with the maximal ideal m, and G a finite group consisting of A-auto-
morphisms of A{X}. If the residue class field A/m is perfect, there
exists o series fe A{X} such that the G-invariant subring A{X}¢ of
A{X} 15 A{f}.

2. At first, we shall show some results concerning A{X}.

Lemma 1. Let A be a linearly topological ring whose topology is
complete and T,. Then, A{X+a}=A{X} for any ac A.

Proof. For any fzi a(X+a) e A{X +a}, we have f=i] b, X¢
1=0 =0

in A[[X]], where {b;} converges to 0. Hence, f e A{X]}.
If o is an ideal of 4, by a{X} we denote the ideal of A{X} consisting

of all series > a,X% a; € a.
1=0

Lemma 2. Let A be a linearly topological ring whose topology is
complete and T,. Let m be a closed ideal of A such that every mem
is topologically nilpotent. If f e A{X} is a series such that f=f mod
m{X} is @ unitary polynomial with the degree s=1, then A{X} is the



