92. On Cubic Galois Extensions of $Q(\sqrt{-3})$

By Hideo WADA

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., May 12, 1970)

Let k be the field $\mathbb{Q}(\sqrt{-3})$ and let K be the field $k(\sqrt[3]{A})$ for some element A of k . In this paper, we shall determine in Theorem 1 a basis of integers of K and determine in Theorem 2 the genus field of K with respect to k and determine in Theorem 3 whether the class number of K is a multiple of 3 or not

1. A basis of integers.

Let O_k be the ring of integers of $k=Q(\sqrt{-3})$. Any cubic galois extension K over k can be written as $k(\sqrt[3]{A})$, where $A \in O_k$, $A \neq 1$, is without cubic factors and, without loss of generality, we may assume that $A=f g^2$, f and g being integers of k having no square factors and $f \not\equiv -1$, $g \not\equiv -1 \pmod{\sqrt{-3}}$. Put $A^* = f^2 g$, $\theta = \sqrt[3]{A}$, $\theta^* = \theta^2/g = \sqrt[3]{A^*}$
and O_x —the ring of integers of K. By the relation $\theta^2 - g\theta^*$ every and O_K =the ring of integers of K. By the relation $\theta^2 = g\theta^*$, every element of K can be expressed in the form $\alpha + \beta \theta + \gamma \theta^*$, $(\alpha, \beta, \gamma \in k)$. Let $\omega = \alpha + \beta \theta + \gamma \theta^*$ be an element of O_K and ω' , ω'' be its conjugates over k . It can be easily veryfied that:

```
(1) \omega + \omega' + \omega'' = 3\alpha,
```
(2) $\omega \omega' + \omega' \omega'' + \omega'' \omega = 3\alpha^2 - 3\beta \gamma f g$,

(3) $\omega \omega' \omega'' = \alpha^3 + \beta^3 A + \gamma^3 A^* - 3\alpha \beta \gamma f g.$

As ω is an integer, 3α and

 $(3\beta)^3A \cdot (3\gamma)^3A^* = (9\beta\gamma fg)^3$,

 $(3\beta)^{3}A + (3\gamma)^{3}A^{*} = 27(\alpha^{3} + \beta^{3}A + \gamma^{3}A^{*} - 3\alpha\beta\gamma fg) - (3\alpha)^{3} + 3.3\alpha.9\beta\gamma fg$ are integers of k. Since A and A^* contain no cubic factors, 3β and 3γ are integers of k. Put $3\alpha=a$, $3\beta=b$ and $3\gamma=c$. Then $\omega=(a+b\theta)^T$ $+ c\theta^*$ /3, $(a, b, c \in O_k)$. From (2) and (3), these coefficients must satisfy the congruences:

 (4) $a^2 - bcfg \equiv 0 \pmod{3}$,

(5) $a^3 + b^3A + c^3A^* - 3abcfg \equiv 0 \pmod{27}$.

We shall next determine a basis of O_K as O_k -module. When $\omega_1=1$, $\omega_2=(a_2+b_2\theta)/3$ and $\omega_3=(a_3+b_3\theta+c_3\theta^*)/3$ are elements of O_K such that:

min $\{|b|$; $O_K \ni (a+b\theta)/3$, $O_k \ni a, b, b\neq 0\} = |b_2|$,

min { $|c|$; O_K \ni $(a+b\theta +c\theta^*)/3$, O_k \ni $a, b, c, c\neq 0$ } = $|c_3|$,

then $\omega_1, \omega_2, \omega_3$ is a basis of O_K as O_k -module, since O_k is Euclidean.

 $(a+b\theta)/3$ is an element of O_K if and only if