118. On a Theorem of E. Michael and K. Nagami

By Masao Sakai

(Comm. by Kinjirô Kunugi, M. J. A., June 12, 1970)

E. Michael [1] and K. Nagami [2] proved the following theorem.

Theorem. Every metacompact and collectionwise normal space is paracompact.

A space is called metacompact if every open covering of it can be refined by a point-finite open covering.

We shall prove this theorem, using the following lemmas for point-finite open covering of a topological space.

Lemma 1. Every point-finite open covering $\{U_{\alpha}\}_{{\alpha}\in A}$ of a topological space contains an irreducible subcovering (see [3]).

Lemma 2. For each point-finite open covering $\{U_{\alpha}\}_{\alpha\in A}$ of a normal space, there exists an open covering $\{V_{\alpha}\}_{\alpha\in A}$ of the space such that $\bar{V}_{\alpha}\subset U_{\alpha}$ for every $\alpha\in A$ (see [4]).

Proof of Theorem. 1. Let X be a meta-compact and collectionwise normal space, and C be an any open covering of X. Then, there exists a point-finite open refinement $U = \{U_{\alpha}\}_{\alpha \in A}$ of the covering C. By Lemma 1, we can assume that the covering U is irreducible. We are going to prove that the open covering U has a σ -discrete open refinement $\{W_n\}_{n=1,2,3,\cdots, }W_n=\{W_{n,\beta}\}_{\beta \in B_n}$. Then, the space X will be paracompact.

2. By Lemma 2, for the irreducible open covering $\{U_{\alpha}\}_{\alpha\in A}$, there exists an open refinement $\{V_{\alpha}\}_{\alpha\in A}$ such that $\bar{V}_{\alpha}\subset U_{\alpha}$, for every $\alpha\in A$. Put $F_{\alpha}=\bar{V}_{\alpha}-\bigcup_{\alpha'\in A\atop \alpha'\neq\alpha}U_{\alpha'}$, then $F_{\alpha}\neq\phi$, for every $\alpha\in A$.

For, if
$$F_{\alpha} = \phi$$
, then $\bigcup_{\alpha' \in A \atop \alpha' \neq \alpha} U_{\alpha'} \supset \bar{V}_{\alpha} \supset V_{\alpha}$. By $U_{\alpha'} \supset V_{\alpha'}$, $\bigcup_{\alpha' \in A \atop \alpha' \neq \alpha} U_{\alpha'} \supset V_{\alpha} \cup \bigcup_{\alpha' \in A \atop \alpha' \neq \alpha} V_{\alpha'} = X$.

This contradicts to the irreducibility of covering $\{U_{\alpha}\}_{\alpha\in A}$. Then $F_{\alpha}\neq \phi$.

3. Any point x of the space X which is contained in only one U_{α} of the family $\{U_{\alpha}\}_{\alpha\in A}$, is contained in F_{α} .

For, suppose that $x \in U_{\alpha}$ and $x \in U_{\alpha'}$ $(\alpha' \in A, \alpha' \neq \alpha)$. By $\bar{V}_{\alpha'} \subset U_{\alpha'}$, $x \in V_{\alpha'}$. As the family $\{V_{\alpha}\}_{\alpha \in A}$ is a covering of X, $x \in V_{\alpha} \subset \bar{V}_{\alpha}$. Then, $x \in \bar{V}_{\alpha} - \bigcup_{\alpha' \in A} U_{\alpha'} = F_{\alpha}$.

4. The family $\{F_{\alpha}\}_{{\alpha}\in A}$ is a closed discrete family.

For, any point x of X is contained in some U_{α} . For a neighborhood of x, put $V(x) = U_{\alpha}$.