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115. Boundary Behaviour of Functions Harmonic
in the Unit Ball
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(Comm. by Kinjird KUNUGI, M. J. A., June 12, 1970)

1. The main purpose of this note is to prove Meier’s theorem
([5], Satz 5, cf. [2], p. 154) in a real-harmonic form in the open unit
ball U whose centre is the origin O in the Euclidean space R®.

We begin with definitions of cluster sets following the planar cases
(cf. [2], [6]). The two-point compactification R'U{—co, + oo} of the
real number system R!is denoted by R*. Let 2 be a domain in R?, Q
be a point of the boundary 92 and G be a subset of 2 whose closure G
in R® contains Q. Let f(P) be a real-valued function in 2. Then, the
cluster set of f at @ along G is defined by

where 8, is the open ball {P; PQ<7} and the closure is taken in R*.
By a cone 4=4(Q, ¢, k) (in 2) at @ we mean an open circular cone in
0 with vertex @, axis along a straight line through @, generating
angle (=one half of the opening angle) ¢,0<¢p<7/2, and altitude .
A segment X (in 2) at Q is an open rectilinear segment X in 2 termi-
nating at Q. The cluster sets corresponding to §=2, 4 and X will be
denoted by C,(f, Q), C,(f, Q) and Cx(f, Q) respectively; these sets are
non-empty and closed in R* and in the case where f is continuous, they
are, except possibly for C,(f,Q), connected, i.e., of a form of
“interval” [a, b], a, b e R*.

A point Q € 09 is called a Plessner point of f if for any cone 4 at
Q, C,(f,Q=R*. A Fatou point Qe 0 of f is a point at which
U C,(f, Q) consists of a single point of R*; here, 4 ranges over all
4

cones at Q. A point Q € 02 is called a Meter point of f if Q Cx(f, Q)

=C,(f, Q)+ R*, where X ranges over all segments at Q. The totality
of Plessner (Fatou, Meier, resp.) points of f will be denoted by I(f, 2)
F(f,2),M(f, ), resp.).
Our main theorem is stated in the case where £ is the ball.
Theorem 1. Let f be harmonic in the ball U={P; OP<1}. Then
QUN{I(f, U)UM(f, U)}
is of first category in Baire’s sense on the unit sphere 0U.
Meier’s theorem is usually called “topological analogue of



