194. Dimension of Dispersed Spaces

By Keiô NAGAMI

(Comm. by Kinjirô Kunugi, M. J. A., Oct. 12, 1970)

Telgársky [5] showed that if X is a paracompact dispersed space, then ind $X = \dim X = \operatorname{Ind} X = 0$. In this paper we consider the equalities between dimension functions defined on hereditarily paracompact spaces which are dispersed by some classes of spaces. All spaces in this paper are Hausdorff.

Let P be a property such that if a space X has P, then each closed subspace of X has P too. P need not be a topological one. Let \mathcal{C} be the class of all spaces with P. A space X is said to be dispersed by \mathcal{C} , to be \mathcal{C} -dispersed or to be P-dispersed, if each non-empty closed set of X contains a point x one of whose relative neighborhoods is an element of \mathcal{C} . Let Y be a subset of X and Y' the set of all points Y in Y one of whose relative neighborhoods is an element of \mathcal{C} . Set $Y^{(0)} = Y$, $Y^{(1)} = Y - Y'$ and $Y^{(\alpha)} = \bigcap \{(Y^{(\beta)})^{(1)} \colon \beta < \alpha\}$ for an ordinal $\alpha > 0$. Each $X^{(\alpha)}$ is closed. X is \mathcal{C} -dispersed if and only if $X^{(r)} = \emptyset$ for some ordinal γ . If X is \mathcal{C} -dispersed, then an ordinal-valued function d on X is defined: $d(x) = \alpha$ if and only if $x \in X^{(\alpha)} - X^{(\alpha+1)}$. Let d(X) denote the minimal ordinal α such that $X^{(\alpha)} = \emptyset$.

Theorem 1. Let X be a hereditarily paracompact space. Then the following are true.

- i) If X is metric-dispersed, then dim X = Ind X.
- ii) If X is separable-metric-dispersed, then $\operatorname{ind} X = \operatorname{dim} X = \operatorname{Ind} X$.

Proof (by transfinite induction on d(X)). Consider the case i). Put the induction assumption that the assertion is true for each hereditarily paracompact space Y with d(Y) < d(X). When d(X) = 1, X is locally metric. Hence the whole X is metric by its paracompactness and the equality $\dim X = \operatorname{Ind} X$ is assured by well known Katětov-Morita's theorem. When $d(X) = \alpha + 1$ and $\alpha > 0$, then $(X - X^{(\alpha)})^{(\alpha)} = \emptyset$. Thus $d(X - X^{(\alpha)}) \le \alpha$ and $\dim (X - X^{(\alpha)}) = \operatorname{Ind} (X - X^{(\alpha)})$ by the induction assumption. Since $\dim X = \max \{\dim X^{(\alpha)}, \dim (X - X^{(\alpha)})\}$ (cf. e.g. Nagami [3, Theorem 9-11]) and $\operatorname{Ind} X = \max \{\operatorname{Ind} X^{(\alpha)}, \operatorname{Ind} (X - X^{(\alpha)})\}$ (cf. Dowker [1, Theorem 3]), we have $\dim X = \operatorname{Ind} X$. When d(X) is the limit ordinal, for each point x of X, d(x) + 1 < d(X). Set $V(x) = X - X^{(\alpha(x)+1)}$. Then V(x) is an open neighborhood of x with $V(x)^{d(x)} = \emptyset$. Hence $\dim V(x) = \operatorname{Ind} V(x)$ by the induction assumption. Since $\dim X = \sup \{\dim V(x) : x \in X\}$ (cf. e.g. Dowker [2, Theorem 3.3]) and $\operatorname{Ind} X$