56. Remarks on the Eichler Cohomology of Kleinian Groups

By Hiroki SATO

Department of Mathematics, Shizuoka University

(Comm. by Kinjirô Kunugi, M. J. A., March 12, 1971)

- 1. Let Γ be a finitely generated kleinian group, Ω its region of discontinuity, Λ its limit set and $\lambda(z)|dz|$ the Poincaré metric on Ω . We denote by Δ an arbitrary Γ -invariant union of components of Ω . In this note we assume that Δ/Γ is a finite union of compact Riemann surfaces, and consider relations between the Kra and the Ahlfors decompositions for $H^1(\Gamma, \Pi_{2q-2})$.
- 2. We fix an integer $q \ge 2$. Let \mathcal{Z} be an Γ -module. A mapping $p: \Gamma \to \mathcal{Z}$ is called \mathcal{Z} -cocycle if $p_{AB} = p_A \cdot B + p_B$, $A, B \in \Gamma$. If $f \in \mathcal{Z}$, its coboundary δf is the cocycle $A \to f \cdot A f$, $A \in \Gamma$. The first cohomology space $H^1(\Gamma, \mathcal{Z})$ is the space of cocycles factored by the space of coboundaries. The Γ -modules used in this note are (1) Π_{2q-2} , the vector space of complex polynomials in one variable of degree at most 2q-2, with $v \cdot A(z) = v(Az)A'(z)^{1-q}$, $v \in \Pi_{2q-2}$ and $A \in \Gamma$ and (2) $H_r(\Delta)(M_r(\Delta))$ the vector space of holomorphic (meromorphic) functions on Δ , with $f \cdot A(z) = f(Az)A'(z)^{1-q}$, $f \in H_r(\Delta)(M_r(\Delta))$, $A \in \Gamma$, where r is an integer. We call $H_r(\Delta, \Gamma)$ and $M_r(\Delta, \Gamma)$, the spaces of holomorphic and meromorphic automorphic forms of weight (-2r) on Δ for Γ , respectively. Two meromorphic (holomorphic) Eichler integrals of order 1-q are identified if they differ an element of Π_{2q-2} . This identification space is denoted by $E_{1-q}(\Delta, \Gamma)(E_{1-q}^0(\Delta, \Gamma))$. If $a_1, a_2, \cdots, a_{2q-1}$ are distinct points in Λ and $\phi \in H_q(\Delta, \Gamma)$, then

$$F(z) = rac{(z-a_1)\cdots(z-a_{2q-1})}{2\pi i} \iint_{arrho} rac{\lambda^{2-2q}(\zeta)ar{\phi}(\zeta)d\zeta\wedge dar{\zeta}}{(\zeta-z)(\zeta-a_1)\cdots(\zeta-a_{2q-1})}$$

is a potential for ϕ (Bers [2]). We denote by $\operatorname{Pot}(\phi)$ a potential for ϕ . A mapping $\alpha \colon E_{1-q}^0(\varDelta, \varGamma) \to H^1(\varGamma, \varPi_{2q-2})$ is defined as $\alpha_A(f) = f \cdot A - f$ for $f \in E_{1-q}^0(\varDelta, \varGamma)$ and $A \in \varGamma$. A mapping $\beta^* \colon H_q(\varDelta, \varGamma) \to H^1(\varGamma, \varPi_{2q-2})$ is defined by setting $\beta_A^*(\phi) = \operatorname{Pot}(\phi) \cdot A - \operatorname{Pot}(\phi)$ for $\phi \in H_q(\varDelta, \varGamma)$.

Theorem A (The Kra decomposition). Every $p \in H^1(\Gamma, \Pi_{2q-2})$ can be written uniquely as $p = \alpha(f) + \beta^*(\phi)$ with $f \in E^0_{1-q}(\Delta, \Gamma)$ and $\phi \in H_q(\Delta, \Gamma)$.

3. For $f \in E_{1-q}(\Delta, \Gamma)$, the polynomials $f(Az)A'(z)^{1-q} - f(z)$ are the periods of f, and we write $f(Az)A'(z)^{1-q} - f(z) = pd_Af(z)$. The periods determine a canonical isomorphism $pd: E_{1-q}(\Delta, \Gamma) \to H^1(\Gamma, \Pi_{2q-2})$. Thus pdf, $f \in E_{1-q}(\Delta, \Gamma)$, is a cohomology class and $pdE_{1-q}(\Delta, \Gamma)$ is the image