110. An Analogue of the Paley-Wiener Theorem for the Heisenberg Group

By Keisaku Kumahara
Department of Applied Mathematics, Osaka University
(Comm. by Kinjiro Kunugi, M. J. A., May 12, 1971)

1. Introduction. Let \(\mathbb{R} \) (resp \(\mathbb{C} \)) be the real (resp. complex) number field as usual. Let \(G \) be the \(n \)-th Heisenberg group, i.e. the group of all real matrices of the form
\[
\begin{pmatrix}
1 & a & c \\
0 & I_n & b \\
0 & 0 & 1
\end{pmatrix}
\]
where \(a = (a_1, \ldots, a_n) \in \mathbb{R}^n \), \(b = (b_1, \ldots, b_n) \in \mathbb{R}^n \), \(c \in \mathbb{R} \) and \(I_n \) is the identity matrix of \(n \)-th order. Let \(H \) be the abelian normal subgroup consisting of the elements of the form (1.1) with \(a = 0 \). For any real \(\eta \) we denote by \(\chi_\eta \) the unitary character of \(H \) defined by
\[
\chi_\eta: \begin{pmatrix}
1 & 0 & c \\
0 & I_n & b \\
0 & 0 & 1
\end{pmatrix}
\]
\[\rightarrow e^{2\pi i \eta c}.\]
Let \(U_\eta \) be the unitary representation of \(G \) induced by \(\chi_\eta \). Then the Plancherel theorem can be proved by means of \(U_\eta(\eta \in \mathbb{R}) \) (see e.g. [4]). However, as we have seen in the case of euclidean motion group ([2]), in order to prove an analogue of the Paley-Wiener theorem we have to consider the representations which have more parameters.

Let \(\check{H} \) be the dual group of \(H \). In this paper we consider the Fourier transform defined on \(\check{H} \equiv \mathbb{R}^{n+1} \).

Let \(C_c^\infty(G) \) be the set of all infinitely differentiable functions on \(G \) with compact support. For any \(\xi \in \mathbb{R}^n \) and \(\eta \in \mathbb{R} \) we denote by \(U^{\xi,\eta} \) the unitary representation of \(G \) induced by the unitary character \(\chi_{\xi,\eta} \) of
\[
H: \chi_{\xi,\eta}: \begin{pmatrix}
1 & 0 & c \\
0 & I_n & b \\
0 & 0 & 1
\end{pmatrix} = e^{2\pi i (\xi^t b) + 2\pi i \xi^t c}. \]
We define the (operator valued) Fourier transform \(T_f \) of \(f \in C_c^\infty(G) \) by
\[
T_f(\xi, \eta) = \int_G f(g)U^{\xi,\eta}_g dg,
\]
where \(dg \) is the Haar measure on \(G \). Then \(T_f(\xi, \eta) \) is an integral operator on \(L_2(\mathbb{R}^n) \) (§ 2). Denote by \(K_f(\xi, \eta; x, y) \) \((x, y \in \mathbb{R}^n)\) be the kernel function of \(T_f(\xi, \eta) \). We shall call \(K_f \) the scalar Fourier transform of \(f \).

The purpose of this paper is to determine the image of \(C_c^\infty(G) \) by the scalar Fourier transform (analogue of the Paley-Wiener theorem).