25. Sur la restriction maximale d'un langage

Par Masami ITO Université de Kyoto-Sangyo

(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1972)

Dans ce mémoire, nous définissons la restriction maximale d'un langage associé à l'espace contextuel*) et nous explorons ses structures. Nous appliquons quelques résultats obtenus à un langage d'états finis.

1. Restriction maximale d'un langage. Soit $\mathcal{M}=(B,M)$ une restriction d'un langage $\mathcal{L}=(A,L)$ telle que $d(\mathcal{M})=n$. Nous appelons \mathcal{M} une restriction maximale du langage \mathcal{L} , lorsque nous avons la condition suivante:

Pour une restriction $\mathfrak{N}=(C,N)$ quelconque de \mathcal{L} telle que $d(\mathfrak{N})=n$, l'ensemble N ne contient pas strictement l'ensemble M.

2. Existence de la restriction maximale d'un langage. Pour le cas où nous aurions au moins une restriction d'un langage, nous avons le théorème suivant:

Théorème 1. Soit $\mathcal{M} = (B, M)$ une restriction d'un langage $\mathcal{L} = (A, L)$. Nous avons alors une restriction maximale $\mathcal{H} = (C, N)$ de \mathcal{L} telle que $d(\mathcal{M}) = d(\mathcal{M})$ et $M \subseteq N$.

Démonstration. Considérons la famille $F = \{\mathcal{H}_{\lambda} = (D_{\lambda}, H_{\lambda}); \lambda \in \Lambda\}$ de toutes les restrictions de \mathcal{L} telles que $d(\mathcal{H}_{\lambda}) = d(\mathcal{M}), M \subseteq H_{\lambda}$ et $B \subseteq D_{\lambda} \subseteq A$ (où $\lambda \in \Lambda, \Lambda$ est un ensemble certain). Pour cette famille, nous introduisons une relation d'ordre \leq comme il suit:

- (1) $\mathcal{H}_{\lambda} \leq \mathcal{H}_{\mu}$, si $H_{\lambda} \subset H_{\mu}$.
- (2) $\mathcal{H}_{\lambda} \leq \mathcal{H}_{\mu}$, si $H_{\lambda} = H_{\mu}$ et que $D_{\lambda} \subseteq D_{\mu}$.

Soit $T = \{ \mathcal{H}_{\mu}; \ \mu \in \Sigma, \Sigma \subseteq \Lambda \}$ une sous-famille de F étant totalement ordonnée par la relation \leq . Si nous pouvons démontrer que cette sous-famille possède au moins un majorant dans la famille F, nous avons un élément maximal dans la famille F à l'aide de théorème de Zorn et nous pouvons considérer cet élément comme un langage satisfaisant à la conclusion du théorème 1.

Posons $D = \bigcup_{\mu \in \mathcal{I}} D_{\mu}$ et $H = \bigcup_{\mu \in \mathcal{I}} H_{\mu}$. Considérons un langage $\mathcal{H} = (D, H)$. Il est aisé de voir que ce langage est une restriction de \mathcal{L} ayant le diamètre $d(\mathcal{M})$ et qu'il est un majorant de la sous-famille T dans la famille F vu la manière de construire ce langage.

3. E-équivalence.**) Pour une préparation d'explorer une

^{*} Quant aux notions et aux symboles que nous employons dans ce mémoire, voir M. Ito (1).

^{**} Concernant un déroulement de cette notion, voir S. Marcus (2).