No. 2]

19. On Quasi-Fibrations over Spheres

By Seiya SASA0

Department of Mathematics, Tokyo Institute of Technology, Tokyo

(Comm. by Kenjiro SHODA, M.J.A., Feb. 12, 1972)

1. Let X be a CW-complex of the form $S^k \bigcup_{\alpha} e^n \bigcup_{\beta} e^{n+k}$. X is called a quasi-fibration over S^n if there exists a map

 $p: (X, S^k) \rightarrow (S^n, pt)$

which induces homotopy isomorphisms. On the other hand we have the notion of k-spherical fibrations over S^n in the sense of Hurewicz.

Let $q: E \to S^n$ be a k-spherical fibration so that it is known that the pair (E, S^k) has the homotopy type such as (X, S^k) . It is clear that, if (X, S^k) has the homotopy type of a pair $(E, S^k) X$ is a quasi-fibration over S^n . In this note we shall prove the following

Theorem 1.1. For a CW-complex X of the form $S^k \bigcup_{\alpha} e^n \bigcup_{\beta} e^{n+k}$ $(n \ge k+2 \ge 4)$. Let $p: (X, S^k) \to (S^n, pt)$ be a quasi-fibration. Then the pair (X, S^k) has the homotopy type of a pair of a k-spherical fibration over S^n .

Remark. Probably, the condition $n \ge k+2$ can be removed. Let $\tilde{\alpha} \in \pi_n(S^k \bigcup_{\alpha} e^n, S^k)$ be the generator which $\partial(\tilde{\alpha}) = \alpha$, let $\iota_k \in \pi_k(S^k)$ be the generator and let $i: S^k \to S^k \bigcup_{\alpha} e^n$ and $j: S^k \bigcup_{\alpha} e^n \to (S^k \bigcup_{\alpha} e^n, S^k)$ be the inclusions respectively.

For the proof of theorem we need following lemmas.

Lemma 1.2. The pair (X, S^k) $(n \ge k + 2 \ge 4)$ has the homotopy type of a pair of a k-spherical fibration over S^n if and only if

$$j_*(\beta) = \pm [\tilde{\alpha}, \iota_k]_r,$$

where $[,]_r$ denotes the relative Whitehead product.

Lemma 1.3. Let $p: (X, S^k) \rightarrow (S^n, pt)$ be a quasi-fibration $(n \ge k + 2 \ge 4)$. Then we have $j_*(\beta) = \pm [\tilde{\alpha}, \iota_k]_r$.

It is obvious that Theorem 1.1 follows from lemmas.

Moreover, Theorem 2.1 in [1] shows that the existence of a quasifibration follows from the condition $j_*(\beta) = \pm [\tilde{\alpha}, \iota_k]_r$. Hence we have

Collorary 1.4. For $X = S^k \bigcup_{\alpha} e^n \bigcup_{\beta} e^{n+k}$ $(n \ge k+2 \ge 4)$, X has the homotopy type of the total space of a k-spherical fibration over S^n if and only if $j_*(\beta) = \pm [\tilde{\alpha}, c_k]_r$, or there exists a quasi-fibration $p: (X, S^k) \rightarrow (S^n, pt)$.

2. In this section we shall give the proofs of lemmas. First we prove Lemma 1.3. Let $Q: S^k \bigcup_{\alpha} e^n \to S^n$ be the natural collapsing map. By a theorem of Blaker-Massy we know that