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In the paper [8], we have studied the dual space of the extended
nuclear space. In this paper we shall continue to do it.

7. The dual space. (2).
Lemma 39. (1) V*(O, h, i) is circled.
(2) V*(O,h,i)/ V*(O,k,])--V*(O, [hk/h/k], min (i,])) for h, lcl.
Proof. (1) It is clear.
(2) Suppose i]. Then we have

V*(0, h, i)+ V*(0, k, ’) V*(0, h, ])+ Y*(0, k, ])
by Lemma 37 in [8]. Now, let F and F belong to V*(0, h,]) and
V*(0, k,]), respectively. Then we have IFl(g)[e/h and
to every g e l(0, 1,]), hence we obtain [F(g)+F2(g)l<=lFl(g)l+[F(g)l
(h+ k) / hk e /1, where l- [hk / h + k]. This proo is complete.

The sequence of neighbourhoods, {V*(0, 7(h), i(h))}, where
V*(O, .(h), i(h)) Y*(O, .(h / 1), i(h / 1)), .(h)=< .(h/ 1)

and .(h)-c as h-c, is a fundamental sequence o neighbourhoods
in q’.

Lemma 40. If {V*(O,?(h),i(h))} is a fundamental sequence
neighbourhoods in ’, then F V*(O,(h),i(h)) for eery integer h
implies F-O, that is, F(g)--O for every g .

Proof. By Lemma 38 in [8], we have min {i(h)}>__l. We write
briefly min {i(h)}--]. Hence there exists some integer N such that the
relation h>=N implies i(h)-j. The fact that F belongs to V*(0, ,(h),
for h>=N follows F e M. and IF(g)ls/(h) for g e l?(0, 1,2"). And
since g/2fi(g) belongs to I(0, 1, ]) for any element g e q with P(g)-O,
we see [F(g)/2fi(g)lz/(h). Consequently we obtain

F(g) 2sP(g) / ,(h).
That shows F(g)--O for every g e q. This proof is complete.

Now, we can prove that the linear space q’ is a linear ranked
space, by M. Washihara, [3].

Theorem 7. The linear ranked space ’ is complete with respect
to the R-convergence.

Proof. Let (F} be an R-cauchy sequence of elements in q’. Then
there exists some fundamental sequence o neighbourhoods

(V*(0, y(h), i(h))}


