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69. A Note on the Dilation Theorems. II
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(Comm. by Kinjir5 KUNU(I, M. Z. A., May 12, 1972)

1. In the previous note [9], one of the authors discussed, jointly
with Yamada, the mutual dependency of several dilation theorems.
Especially, it is pointed out that Stinespring-Umegaki’s algebra dila-
tion theorem implies the so-called strong dilation theorem of Sz.-Nagy.
However, the proofs of the implication are somewhat lengthy. In the
present note, it will be shown that Stinespring-Umegaki’s theorem
can serve a proof of more general dilation theorem of Foia-Suciu [2].
Some consequences are also discussed.

2. The following theorem is the algebra dilation theorem due to
[7] and [10]:

Theorem 1 (Stinespring-Umegaki). If V is a completely positive
(or positive definite)linear mapping defined on a unital C*-algebra B
with the range in the algebra B(H) of all operators on a Hilbert space
H, and V satisfies V1---1, then there is a (.-preserq;ing) representation
U of B on K such that
(1) Vf--pUf[H
for any f e B, where K includes H as a subspace and p is the projection

of K onto H.
In the present note, the notion of the complete positivity is not

necessary, since Stinespring [7; Theorem 4] established that the com-
plete positivity coincides with the usual positivity i B is commutative
which is the case treated in this note. Exactly, in the present note, B
is always the algebra C(X) of all continuous unctions defined on a
compact Hausdorff space X equipped with the sup-norm.

3. A subalgebra A of C(X) is a function algebra on X if A
satisfies
(i) A contains the constants, and
(ii) A separates the points of X.
A function algebra A is a Dirichlet algebra on X if the real part Re A
of all real parts of unctions belonging to A is dense in the algebra of
all real continuous functions on X.

An operator representation V o a function algebra A on a Hilbert
space H is an algebra homomorphism of A into B(H) which satisfies
(2) Vl=l


