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1. Introduction. Suppose that a (bounded linear) operator T
acts on a Hilbert space ). A complex number ,2 is an approximate
propervalue of T if there exists a sequence {x} of unit vectors such
that
( * ) (T--)x I1-0 (u--c).
The set of all pproximate propervalues of T is called the approximate
spectrum (T) of T. According to Kasahra and Takai [8], an approxi-
mate propervalue of T is called normal if 2 stisfies urthermore
(**) (T-2)*x[[-0 (n--c).
The set z(T) of all normal approximate propervalues of T is called the
normal approximate spectrum of T. Several equivalent conditions
which give the normal approximate spectra are discussed in [4] and [8].

In the present note, we shall concern with some additional proper-
ties of the normal approximate spectra oi operators. In 2, we shall
give a theorem of Hildebrandt [7; Satz 2 (ii)] and observe its conse-
quences. A theorem of Arveson [1; Theorem 3.1.2] follows at once.
A theorem of Stampfii [9] is improved. In 3, we shall show that a
spectrloid is finite in the sense of Williams [10]. In 4, we shall
discuss a variant of a proposition of Bunce [3 Proposition 6].

2. Consequences of Hildebrandt’s theorem. Hildebrandt [7]
stated without proof the following theorem"

Theorem 1 (Hitdebrandt). If belongs to OW(T) and zr(T), then
e zn(T), where 3W(T) is the frontier of the numerical range

( 1 ) W(T) {(Txl x) x 1}.
Proof. We can assume that =0 and Re T>_0 where

( 2 ) Re T- --I(T + T*).
2

Then we have

so that we have
I(Txn Xn)lll

(Re Tx x)oO (n oo).
Let A be the (positive) square-root of Re T. Then we have

l[AxII=(Aexlx)=(Re Txlx)-O (n-.oo).
Therefore we have

I[Re Txll=[lAx[l--O (nc),


