62. Local Boundedness of Monotone-type Operators^{*}

By P. M. FITZPATRICK,**' P. HESS,***' and Tosio KATO***'

(Comm. by Kôsaku Yosida, M. J. A., May 12, 1972)

In this note we give a simple proof that certain monotone-type operators are locally bounded in the interior of their domains, thus generalizing a result of [1]. As special cases, we obtain the local boundedness for monotone operators from a Fréchet space to its dual and for accretive operators in a Banach space with a uniformly convex dual.

In what follows let X, Y be metrizable linear topological spaces. Further assume that Y is locally convex and complete (Fréchet space). We denote by \langle , \rangle the pairing between Y and its dual Y*. We introduce a metric in X and denote by B_r the open ball in X with center 0 and radius r > 0.

Let T be a mapping of X into 2^{Y^*} , with domain $D(T) = \{x \in X : Tx \neq \emptyset\}$ and graph $G(T) = \{(x, f) \in X \times Y^*; f \in Tx\}$. Let F be a function on X to Y. Slightly generalizing a definition used in [1], we say T is Fmonotone if $\langle F(x_1-x_2), f_1-f_2 \rangle \ge 0$ for $(x_j, f_j) \in G(T), j=1, 2$.

Theorem. Assume that there is $r_0 > 0$ such that

(i) F is uniformly continuous on B_{r_0} to Y.

(ii) For each $r < r_0$, $F(B_r)$ is absorbing in Y.

(iii) For each $u \in X$, the set $\{F(z-u) - Fz; z \in B_{r_0}\}$ is bounded in Y. If $T: X \rightarrow 2^{Y^*}$ is F-monotone, then T is locally bounded at each interior point x_0 of D(T), in the following sense: for each sequence $\{(x_n, f_n)\}$ in G(T) with $x_n \rightarrow x_0, \{f_n\}$ is equicontinuous.

Examples. 1. Let Y=X and F=identity map in X. Then Fmonotonicity means monotonicity in the sense of Minty-Browder. Conditions (i) to (iii) are trivially satisfied, and the theorem shows that a monotone operator from a Fréchet space X to X^* is locally bounded in the interior of its domain (cf. [2], [3]).

2. Let X be a Banach space with X^* uniformly convex, and let $Y=X^*$ so that $Y^*=X^{**}=X$. Let F be the (normalized) duality map of X to X^* . Then F-monotonicity means accretiveness in the usual sense. It is known that F is onto X^* and uniformly continuous on any bounded set in X. Thus (i) to (iii) are satisfied, and the theorem shows

^{*)} This work was partly supported by NSF Grants GP-27719 and GP-29369X.

^{**)} Courant Institute of Math. Sciences, New York University, U.S.A.

^{***)} Department of Math., University of California, Berkeley, U.S.A.