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1. Introduction. Tamura and Shafer proved in [3] the following :

Theorem 1. If S is an exponential archimedean semigroup with
idempotent, then S is an ideal extension of I by N where I is the direct
product of an abelian group G and a rectangular band B and N is an
exponential nil-semigroup.

However, the converse is not necessarily true. For example, let
S={a, b, ¢, d} be the semigroup of order 4 defined by (x,y¢S)

xy=1vy for y#d and all z; xd=a for x+c; cd=>b.
S is the ideal extension of a right zero semigroup {a, b, c} by a null
semigroup of order 2. Associativity of S is easily verified, but S is
not exponential :
(cd)’=b*=D, cd’=ca=a.

The purpose of this paper is to prove Theorem 2 which character-
izes exponential ideal extensions of I by N, and to give an alternate
proof of the fact that I is completely simple. See the definition of the
used terminology in [3] and [1]. The notation may be different from
that in [1].

Theorem 2. S is an exponential archimedean semigroup with
idempotent if and only if S is an ideal extension of the direct product
I=AXGXM of a left zero semigroup A, an abelian group G, and a
right zero semigroup M by an exponential nil-semigroup N, with
product determined by three partial homomorphisms ¢: N\{0}—M,
®&: N\{0}—=G, y: N\{0} >4 in the following manner. Let (1,a,p),
v, b, e AXGXM, s,te N\{0}.

,a,p) 8=, (s®), sp)
52, a, ) =(ps, (s&)a, 1)

(201) ('2’ a, ﬂ)'(V’ b’ 77):(29 ab’ 77)
s ___{st if st£0in N
(s, (s&)(t®), tp) if st=0in N

2. Alternate proof of complete simpleness of I. In [3] Ander-
son’s theorem on bicyclic subsemigroup was used, but we will derive
primitiveness of idempotent elements. Assume that Sis an exponential
archimedean semigroup. Let ¢ be an idempotent element of S and let
I=8eS. Since ICSaS for all a €S, I is the kernel of S and hence I is
simple. Let e and f be idempotents such that ef=fe=f. Now Iel



