101. On Complex Parallelisable Manifolds and their Small Deformations

By Iku NAKAMURA

(Comm. by Kunihiko Kodaira, M. J. A., Sept. 12, 1972)

o°. Introduction. By a complex parallelisable manifold we mean a compact complex manifold with the trivial holomorphic tangent bundle. Wang [7] showed that a complex parallelisable manifold is the quotient space of a simply connected complex Lie group by one of its discreet subgroups.

This note is a preliminary report on our recent results on complex parallelisable manifolds and their small deformations. Details will appear in the forthcoming paper [5].

- 1°. Let X be a compact complex manifold of dim n. We denote by \mathcal{O} and Ω^p the sheaf of germs of holomorphic functions and the sheaf of germs of holomorphic p-forms. We define $h^{p,q} = \dim H^q(X, \Omega^p)$, $P_m = \dim H^\circ(X, (\Omega^n)^{\otimes m})$, r =the number of linearly independent closed holomorphic 1-forms, $\kappa =$ Kodaira dimension of X and $b_i =$ the i-th Betti number of X. S. Iitaka proposed the problem whether all P_m and κ are deformation-invariants ([1]).
- 2° . Proposition. A simply connected complex Lie group G of $\dim_{\mathbb{C}} n$ is analytically homeomorphic to \mathbb{C}^n as a complex manifold.
- **Proof.** We shall prove the proposition by induction on n. It is obvious in case of n=1. Let the Lie group be G. If $n\geq 2$, we can take a connected normal subgroup N. Then the canonical mapping $\pi: G \rightarrow G/N$ defines a holomorphic fiber bundle. Since both G/N and N are connected and simply connected we obtain the proposition by the induction hypothesis and Grauert's theorem.
- 3° . We define a complex parallelisable manifold to be solvable if the corresponding Lie group is solvable. From now on we assume X to be solvable. Note that the universal covering of X is analytically homeomorphic to C^n by the above Proposition.

Theorem 1. Three dimensional solvable manifolds are classified into the following four classes.

	Lie group	$b_{\scriptscriptstyle 1}$	r	$h^{\scriptscriptstyle 0,1}$	Structure (Albanese mapping)
(1)	abelian	6	3	3	complex torus
(2)	nilpotent	4	2	2	$T^{\scriptscriptstyle 1}$ -bundle over $T^{\scriptscriptstyle 2}$
(3a)	solvable	2	1	1	$T^{\scriptscriptstyle 2}$ -bundle over $T^{\scriptscriptstyle 1}$
(3b)	solvable	2	1	3	$T^{\scriptscriptstyle 2}$ -bundle over $T^{\scriptscriptstyle 1}$