4. A Remark on Integral Equation in a Banach Space

By Kenji Maruo and Naoki Yamada
(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1973)

1. Introduction and main theorem.

The main object of this paper is to extend the result of G. Webb [1] on the solution of the integral equation associated with some nonlinear equation of evolution in a Banach space to the time dependent case.

Let E be a Banach space with norm \| \|.
Let $A(t)(0 \leqq t \leqq T)$ be a linear accretive operator which satisfies the conditions of T. Kato [2], H. Tanabe [3] or T. Kato and H. Tanabe [4], and $B(t)$ be a nonlinear, accretive, everywhere defined operator such that $(t, u) \rightarrow B(t) u$ is a strongly continuous mapping from $[0, T] \times E$ to E which maps bounded sets to bounded sets. It is known that there exists an evolution operator $U(t, \tau) 0 \leqq \tau \leqq t \leqq T$ with norm $\leqq 1$ to the linear equation $d u(t) / d t+A(t) u(t)=0$, and that $A(t)$ is m-accretive for $t \in[0, T]$.

Then we can state our main theorem.
Theorem. Under our assumption, for any $x \in E, \tau \in[0, T[$, there exists a unique solution $u(t, \tau ; x)$ to the integral equation

$$
\begin{equation*}
u(t, \tau ; x)=U(t, \tau) x-\int_{\tau}^{t} U(t, s) B(s) u(s, \tau ; x) d s \tag{E}
\end{equation*}
$$

on $[\tau, T]$. If we define $W(t, \tau) x=u(t, \tau ; x)$, then $W(t, \tau)$ has the following evolution properties and an inequality,
(1) $W(t, \tau)=W\left(t, t^{\prime}\right) W\left(t^{\prime}, \tau\right), \quad W(t, t)=I \quad$ for $0 \leqq \tau \leqq t^{\prime} \leqq t \leqq T$
(2) $\quad W(t, \tau) x$ is strongly continuous in $0 \leqq \tau \leqq t \leqq T$
$\|W(t, \tau) x-W(t, \tau) y\| \leqq\|x-y\|$
The authors wish to thank Professor H. Tanabe for his advices.

2. Proof of the theorem.

The main idea of the proof is due to G. Webb [1].
Proposition 1. For any $x \in E, \tau \in\left[0, T\left[\right.\right.$, there exists $T_{0}\left(\tau<T_{0} \leqq T\right)$ and a continuous function $u(t, \tau ; x):\left[\tau, T_{0}\right] \rightarrow E$ such that $u(t, \tau ; x)$ is a solution of (E) on $\left[\tau, T_{0}\right]$.

Proof. Let $x \in E, \tau \in[0, T[$ be fixed. In view of the continuity of $B(t) x$, for any $\varepsilon>0$ there exists a positive number δ depending on x, τ, ε, such that for any $v \in V=\{v:\|x-v\|<\delta\}$ and any $t,|t-\tau|<\delta$ the inequality $\|B(t) v-B(\tau) x\| \leqq \varepsilon$ hold. Take $M=\|B(\tau) x\|+\varepsilon$ then $\|B(t) v\| \leqq M$ for any $v \in V$ and $t,|t-\tau|<\delta$. Under the assumptions of [2] or [3] we

