3. A Proof of Negative Answer to Hilbert's lOth Problem

By Ken HIR0SE and Shigeaki IIDA Department of Mathematics, Waseda University

(Comm. by Kunihiko KODAIRA, M.J.A., Jan. 12, 1973)

0. Recently, the effective methods for Diophantine equations make a rapid progress.

A. Baker gave an effective procedure for the existence of integer solutions of some kinds of Diophantine equations in [1].

In his paper [2], Ju. B. Matijasevič proved the unsolvability of Hilbert's 10th problem by using the results of Julia Robinson, M. Davis and H. Putnum in [3], [4] and [5].

In the present note, we shall give a short proof of the negative solution of Hilbert's 10th problem. That is, we lead to the unsolvability of the problem directly from the following result of Davis [3]:

Every recursively enumerable set S can be expressed in the form, (*) $x \in S = (\exists y)(\forall k)_{k \le y}(\exists z_1) \cdots (\exists z_m)[P(x, y, k, z_1, \cdots, z_m)=0],$ where P is a polynomial with integer coefficients.

We shall give a full detail in [6].

1. First, we define certain sequences and state some lemmata.

Definition 1. Let $u_n, v_n, (a)_n$ be sequences of numbers defined by

$$
u_1 = u_2 = 1, \t u_{n+2} = u_{n+1} + u_n,
$$

\n
$$
v_1 = 1, \t v_2 = 3, \t v_{n+2} = v_{n+1} + v_n,
$$

\n(a)₀ = 0, (a)₁ = 1, (a)_{n+2} = a·(a)_{n+1} - (a)_n,
\nnstant.
\n(1) If when v_1 then v_2 is a

where α is a constant.

- Lemma 1. (1) If $m | n$, then $u_m | u_n$.
- (2) $2u_{m+n} = u_m v_n + u_n v_m$.
- (3) $2v_{m+n} = 5u_mu_n+v_mv_n$.
- (4) $u_{m+n+1} = u_{m+1}u_{n+1} + u_m u_n$
- (5) $u_n v_n = u_{2n}$.
- (6) $(u_n, v_n) = 1$, if $3/n$.

(7)
$$
[(2x(2x))_n)_n/(2(2x)_n)_n]=x^n.
$$

Proof. For (1)~(6), let $\alpha = (1+\sqrt{5})/2$, $\beta = (1-\sqrt{5})/2$ and then we obtain $u_n=(\alpha^n-\beta^n)/\sqrt{5}$ and $v_n=\alpha^n+\beta^n$, from which the above formulae may be derived.

For (7), we put $p=(2x)_n$. By $(2x)_n>x^n$ we have $x^n(2p)_n \leq (2xp)_n$ $\langle (x^n+1)(2p)_n.$

Definition 2. We define sequences of numbers $|a|_n$, $\{a\}_n$ such that:

$$
|a|_1 = 1, \quad |a|_2 = a+1, \quad |a|_{n+2} = a \cdot |a|_{n+1} - |a|_n,
$$

$$
\{a\}_0 = 1, \quad \{a\}_1 = a-1, \quad \{a\}_{n+2} = a \cdot \{a\}_{n+1} - \{a\}_n.
$$