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3. A Proof of Negative Answer to Hilbert’s 10th Problem
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(Comm. by Kunihiko KODAIRA, M. J. A., Jan. 12, 1973)

0. Recently, the effective methods for Diophantine equations
make a rapid progress.

A. Baker gave an effective procedure for the existence of integer
solutions of some kinds of Diophantine equations in [1].

In his paper [2], Ju. B. Matijasevi¢ proved the unsolvability of
Hilbert’s 10th problem by using the results of Julia Robinson, M. Davis
and H. Putnum in [3], [4] and [5].

In the present note, we shall give a short proof of the negative
solution of Hilbert’s 10th problem. That is, we lead to the unsolvabi-
lity of the problem directly from the following result of Davis [3]:

Every recursively enumerable set S can be expressed in the form,
(%) ze S=ANVE) 1, (32) - - - @2 IIP(x, Y, k, 2y, - - -, 2,) =0],
where P is a polynomial with integer coefficients.

We shall give a full detail in [6].

1. First, we define certain sequences and state some lemmata.

Definition 1. Let u,,v,, (a), be sequences of numbers defined by

U =u,=1, Upps =W sy +Uny
v=1, v,=3, Vnp2=Vny1+Vns
(af)():o’ (a')l‘_"]-’ (a')n+z:a/'(a)n+l—(a)m
where ¢ is a constant.

Lemma 1. Q) If m|n, then u,|u,.

(2) 22Uy, =UpVp + Uy V.

3B 20,0 =bUpU, + V.

(4) U ns1=Wm o 1Un 11 Uy Uy

(B) UV, =1U,,.

©6) (uy,v,)=1, if 3tn.

Proof. For (1)~(6), let a=(1++5)/2, B=(1—+'5)/2 and then
we obtain u,=(a"—p"/v'5 and v,=a"+p", from which the above
formulae may be derived.

For (7), we put p=@2x),. By (2x),>x" we have z"(2p), <(2xp),
<(2"+1D(2p),.

Definition 2. We define sequences of numbers |al,, {a}, such that:

lah=1, |ah=a+1, |@ls,=0|Cl—|C,
{a’}ozl’ {a'}lza—l’ {a}n+2:a'{a}n+l'—{a}n°



