22. Semi-linear Poisson's Equations

By Yoshio KONISHI^{*)} Department of Mathematics, University of Tokyo (Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1973)

§1. Semi-linear Poisson's equations. Let S be a separable, locally compact, non-compact Hausdorff space, and $C_0(S)$ be the completion with respect to the maximum norm of the space of real-valued continuous functions with compact supports defined on S. $C_0(S)$ is thus a Banach lattice.¹⁾ Assume that we are given a "non-negative" contraction semi-group $\{T_t\}_{t>0}$ of class (C_0) in $C_0(S)$ (see Phillips [11], Hasegawa [5] and Sato [12]). We shall be concerned with the situation in which

(1) the infinitesimal generator A of $\{T_t\}_{t\geq 0}$ admits a densely defined inverse A^{-1} .

That is, we suppose that the semi-group $\{T_t\}_{t\geq 0}$ admits a "potential operator" V in the sense of Yosida [17] (see also Chapter XIII, 9 of Yosida [19]):

$$V = -A^{-1}$$
.

Now we introduce a nonlinear operator ²⁾ β_0 in $C_0(S)$ associated with a strictly monotone increasing continuous function $\beta: D(\beta) = (a, b) \rightarrow R^1$, $-\infty \le a < 0 < b \le +\infty$, such that $\beta(0) = 0$, $\lim_{r \downarrow a} \beta(r) = -\infty$ if $a \ne -\infty$, and that $\lim_{r \uparrow b} \beta(r) = +\infty$ if $b \ne +\infty$:

(2)
$$D(\beta_0) = \{ u \in C_0(S) ; u(s) \in D(\beta) \text{ for any } s \in S \}, \\ (\beta_0 u)(s) = \beta(u(s)), s \in S, \text{ for } u \in D(\beta_0). \end{cases}$$

We consider the "semi-linear Poisson's equation":

$$Au-\beta_0u=-f, \qquad f\in C_0(S).$$

Our theorem of the existence and uniqueness reads:

Theorem. The operator $A - \beta_0$ admits a densely defined inverse $(A - \beta_0)^{-1}$.

Remark. It is shown in Yosida [18] that the semi-group in $C_0(\mathbb{R}^N)$ associated with the N-dimensional Brownian motion admits a potential operator in his sense even in the *recurrent* cases, i.e., N=1 or 2 (see also Sato [13] and Hirsch [6], where one finds studies on the existence of potential operators associated with spatially homogeneous Markov

^{*)} Partly supported by Fûjukai Foundation.

¹⁾ We shall make use of the notation in Banach lattice. See, e.g., Chapter XII, 3 of Yosida [19].

²⁾ Throughout the paper the mappings are all single-valued.